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Definition of an elliptic net

Definition (KS)
Let R be an integral domain, and A a finite-rank free
abelian group. An elliptic net is a map W : A → R such
that the following recurrence holds for all p, q, r , s ∈ A.

W (p + q + s)W (p − q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0

I The recurrence generates the net from finitely many
initial values.



The Tate Pairing
via Elliptic Nets

Katherine Stange

Elliptic Nets

Pairings from Nets

Algorithm

Analysis

Summary

Elliptic Nets in their Natural Habitat

E : y2 + y = x3 + x2 − 2x ; P = (0, 0), Q = (1, 0)

c ∞ c [1]P c [2]P

c [1]Q c [1]P + [1]Q c [2]P + [1]Q

c [2]Q c [1]P + [2]Q c [2]P + [2]Q

c [3]Q c [1]P + [3]Q c [2]P + [3]Q
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Elliptic Nets in their Natural Habitat
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Elliptic Nets in their Natural Habitat

E : y2 + y = x3 + x2 − 2x ; P = (0, 0), Q = (1, 0)

c 0 c 1 c 1

c 1 c 1 c 2

c 1 c 3 c 1

c 5 c 8 c 19
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Elliptic Nets in their Natural Habitat

E : y2 + y = x3 + x2 − 2x ; P = (0, 0), Q = (1, 0)

c +0 c + 1 c + 1

c + 1 c + 1 c + 2

c + 1 c + 3 c − 1

c − 5 c + 8 c − 19
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Curve + Points give Net

Theorem (KS)
Let E be an elliptic curve defined over a field K . For all
v ∈ Zn, there exist functions

Ψv : En → K

such that the following holds:
1. Each Ψv is elliptic in each variable.
2. For any fixed P ∈ En, the function W : Zn → K

defined by
W (v) = Ψv(P)

is an elliptic net.
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Characterising Functions Ψv

The functions Ψv may be characterised uniquely by the
additional assumptions that

1. Ψv(P) vanishes exactly when v · P = 0 on E .
2. Ψv = 1 whenever v is ei or ei + ej for some standard

basis vectors ei 6= ej .

I We call W the elliptic net associated to E , P1, . . . , Pn,
and write WE ,P.

I We call P1, . . . , Pn the basis of WE ,P.
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Division Polynomials

Any elliptic curve E has a Weierstrass equation. Suppose

E : y2 = x3 + Ax + B .

The elliptic functions Ψk are the Division Polynomials in
terms of x , y , A, B:

Ψ1 = 1,

Ψ2 = 2y ,

Ψ3 = 3x4 + 6Ax2 + 12Bx − A2,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3),
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Net Polynomial Examples
In higher rank case, we also have such polynomial
representations.

Ψ−1,1 = x1 − x2 ,

Ψ2,1 = 2x1 + x2 −
(

y2 − y1

x2 − x1

)2

,

Ψ2,−1 = (y1 + y2)
2 − (2x1 + x2)(x1 − x2)

2 ,

Ψ1,1,1 =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3)
,

Can calculate more via the recurrence...

Ψ3,1 = (x2 − x1)
−3(4x6

1 − 12x2x5
1 + 9x2

2 x4
1 + 4x3

2 x3
1

− 4y2
2 x3

1 + 8y2
1 x3

1 − 6x4
2 x2

1 + 6y2
2 x2x2

1 − 18y2
1 x2x2

1

+ 12y2
1 x2

2 x1 + x6
2 − 2y2

2 x3
2 − 2y2

1 x3
2 + y4

2 − 6y2
1 y2

2

+ 8y3
1 y2 − 3y4

1 ) .
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Elliptic nets calculate the group law

Consider the one-dimensional case. Suppose we have

E : y2 = x3 + Ax + B .

Define
φk = xΨ2

k −Ψk+1Ψk−1 ,

4yωk = Ψk+2Ψ
2
k−1 −Ψk−2Ψ

2
k+1 .

Then we have

[k ]P =

(
φk (P)

Ψk (P)2 ,
ωk (P)

Ψk (P)3

)
.

In general, the elliptic net calculates the coordinates of
any linear combination of its basis points.
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Example

E : y2 + y = x3 + x2 − 2x ; P = (0, 0), Q = (1, 0)

↑
Q

4335 5959 12016 −55287 23921 1587077
94 479 919 − 2591 13751 68428
− 31 53 −33 −350 493 6627

−5 8 −19

− 41 − 151 989

1 3 −1

− 13 −36 181

1 1 2

− 5 7 89

0 1 1

−3 11 38

P →
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Example

E : y2 + y = x3 + x2 − 2x ; P = (0, 0), Q = (1, 0)

↑
Q

4335 5959 12016 −55287 23921 1587077
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Lattice Property

I For an integer elliptic net, for each prime p, there
exists a Lattice of Apparition L ⊂ A such that

W (v) ≡ 0 mod p ⇐⇒ v ∈ L

I Let Ẽ , P̃1, . . . , P̃n be the images of E , P1, . . . , Pn
under reduction modulo p.

I Then WẼ ,P̃ (taking values in Fp) is simply the
reduction of the values of WE ,P modulo p.

I In particular, WE ,P(v) ≡ 0 mod p if v · P = 0 on Ẽ .
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Example of Reduction Mod 5 of an Elliptic Net

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

I The elliptic net is not
periodic modulo the
lattice of apparition.

I The appropriate
translation property
should tell how to obtain
the green values from
the blue values.

I There are such translation properties, and it is within
these that the Tate pairing information lies.
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Elliptic Nets and Linear Combinations of
Points

I If Wi is the elliptic net associated to E , Pi , Qi for
i = 1, 2, and

[a1]P1 + [b1]Q1 = [a2]P2 + [b2]Q2

then

W1(a1, b1) is not necessarily equal to W2(a2, b2) .

I So how do we propose to compare two elliptic nets
supposedly associated to the same linear
combinations?
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Defining a Net on a Free Abelian Cover

I Let K be a finite or number field. Let Ê be any finite
rank free abelian group surjecting onto E(K ).

π : Ê → E(K )

I For a basis P1, P2, choose pi ∈ Ê such that
π(pi) = Pi .

I We specify an identification

Z2 ∼= 〈p1, p2〉

via ei 7→ pi .
I The elliptic net W associated to E , P1, P2 and

defined on Z2 is now identified with an elliptic net W ′

defined on Ê .
I This allows us to compare elliptic nets associated to

different bases.
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Defining a Special Equivalence Class

Definition
Let W1, W2 : A → K . Suppose f : A → K ∗ is a quadratic
function. If

W1(v) = f (v)W2(v)

for all v, then we say W1 is equivalent to W2.

I The basis change formula is an equivalence, when
the elliptic nets are viewed as maps on Ê as
explained in the previous slide.

I In this way, we can associate an equivalence class to
a subgroup of E(K ).
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Statement of Theorem

Theorem (KS)
Fix a positive m ∈ Z. Let E be an elliptic curve defined
over a finite field K containing the m-th roots of unity. Let
P, Q ∈ E(K ), with [m]P = O. Choose S ∈ E(K ) such
that S /∈ {O,−Q}. Choose p, q, s ∈ Ê such that
π(p) = P, π(q) = Q and π(s) = S. Let W be an elliptic
net in the equivalence class associated to a subgroup of
E(K ) containing P, Q, and S. Then the quantity

Tm(P, Q) =
W (s + mp + q)W (s)

W (s + mp)W (s + q)

is the Tate pairing.
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Choosing an Elliptic Net

Corollary
Let E be an elliptic curve defined over a finite field K , m a
positive integer, P ∈ E(K )[m] and Q ∈ E(K ). Then

τm(P, P) =
WE ,P(m + 2)WE ,P(1)

WE ,P(m + 1)WE ,P(2)
,

and

τm(P, Q) =
WE ,P,Q(m + 1, 1)WE ,P,Q(1, 0)

WE ,P,Q(m + 1, 0)WE ,P,Q(1, 1)
.
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Elliptic Net Algorithm
Algorithm Outline

1. Given E , P, Q with [m]P = 0, calculate the initial
terms of WE ,P,Q.

2. Using the recurrence relation, calculate the terms
W (m + 1, 0), W (m + 1, 1).

3. Calculate Tm(P, Q) = W (m + 1, 1)/W (m + 1, 0).
4. Perform final exponentiation exactly as in Miller’s

algorithm.
Remarks:

I There are polynomial formulae for the initial terms of
Step 1.

I Step 4 is also performed in Miller’s algorithm and the
same efficient methods apply here.

I The challenge lies in efficient computation of large
terms of the net WE ,P,Q.
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Computing Terms of WE ,P,Q

(k-3,0) (k-2,0) (k-1,0) (k,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0)

(k-1,1) (k,1) (k+1,1)

Figure: A block centred at k
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Computing Terms of WE ,P,Q

Double and add algorithm:

Block centred
at k

xxppppppppppp

&&NNNNNNNNNNN

Block centred
at 2k

Block centred
at 2k + 1

Each term of the new block requires one instance of the
recurrence relation, i.e. several multiplications and an
addition.
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Complexity
Let k be the embedding degree. Let P ∈ E(Fq) and
Q ∈ E(Fqk ).

S squaring in Fq
Sk squaring in Fqk

M multiplication in Fq
Mk multiplication in Fqk

Algorithm: Elliptic Net

Double: 6S + (6k + 26)M + Sk + 3
2Mk

DoubleAdd: 6S + (6k + 26)M + Sk + 2Mk

Algorithm: Optimised Miller’s 1

Double: 4S + (k + 7)M + Sk + Mk
DoubleAdd: 7S + (2k + 19)M + Sk + 2Mk

1Koblitz N., Menezes A., Pairing-based cryptography at high
security levels, 2005
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In Practice
Thank you to Michael Scott, Augusto Jun Devigili and Ben
Lynn for implementing the algorithm. A timing comparison
program is bundled with Ben Lynn’s Pairing-Based
Cryptography Library at http://crypto.stanford.edu/pbc/

I type a: 512 bit base-field, embedding degree 2,
1024 bits security, y2 = x3 + x , group order is a
Solinas prime.

I type f: 160 bit base-field, embedding degree 12,
1920 bits security, Barreto-Naehrig curves [Pairing
Friendly Elliptic Curves of Prime Order, SAC 2005]

Algorithm: Miller’s Elliptic Net

type a 19.8439 ms 40.6252 ms
type f 238.4378 ms 239.5314 ms

average time of a test suite of 100 randomly generated
pairings in each of the two cases
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Potential Advantages

I Naturally inversion-free.
I Naturally deterministic.
I Since Double and DoubleAdd steps are similar or the

same, is independent of hamming weight and avoids
side-channel attacks.

I Lends itself to time-saving precomputation for
repeated pairings em(P, Q), e.g. where E , m, and P
are fixed.

I Code is simple.
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Improving the Algorithm

To compute a given pairing, we have many choices:
I Choice of a point S.
I Choice of lifts of P, Q, S.
I Choice of a subgroup of E(K ) containing P and Q,

and S.
I Choice of an elliptic net in the given equivalence

class.
I Choice of scaling of the chosen net.
I Choice of recurrences used to compute the terms of

the net.
I Choice of order of operations for the computations.

In the algorithm I have given, I have made apparently
convenient choices for these things. It is very probable
significant improvement is possible.
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Summary

I Elliptic nets provide an alternate computational
model for elliptic curves.

I The terms of an elliptic net compute the Tate and
Weil pairings.

I The resulting algorithm is of comparable complexity
to Miller’s Algorithm and is likely to yield to further
optimisation.

I The algorithm may have inherent security and
computational benefits.

Slides and Pari/GP scripts available at
http://www.math.brown.edu/~stange/
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