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Elliptic Divisibility Sequences Definitions

Definition and Examples

Definition
A sequence W is an elliptic divisibility sequence if for all positive
integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

I Generated by W1, . . . , W4 via the recurrence.
I By convention W1 = 1 and W2W3 6= 0.
I Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

I Example: 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .

I Example: 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,
−3769372,−299154043,−12064147359, . . .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 4 / 52



Elliptic Divisibility Sequences Definitions

Definition and Examples

Definition
A sequence W is an elliptic divisibility sequence if for all positive
integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

I Generated by W1, . . . , W4 via the recurrence.

I By convention W1 = 1 and W2W3 6= 0.
I Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

I Example: 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .

I Example: 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,
−3769372,−299154043,−12064147359, . . .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 4 / 52



Elliptic Divisibility Sequences Definitions

Definition and Examples

Definition
A sequence W is an elliptic divisibility sequence if for all positive
integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

I Generated by W1, . . . , W4 via the recurrence.
I By convention W1 = 1 and W2W3 6= 0.

I Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

I Example: 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .

I Example: 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,
−3769372,−299154043,−12064147359, . . .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 4 / 52



Elliptic Divisibility Sequences Definitions

Definition and Examples

Definition
A sequence W is an elliptic divisibility sequence if for all positive
integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

I Generated by W1, . . . , W4 via the recurrence.
I By convention W1 = 1 and W2W3 6= 0.
I Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

I Example: 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .

I Example: 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,
−3769372,−299154043,−12064147359, . . .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 4 / 52



Elliptic Divisibility Sequences Definitions

Definition and Examples

Definition
A sequence W is an elliptic divisibility sequence if for all positive
integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

I Generated by W1, . . . , W4 via the recurrence.
I By convention W1 = 1 and W2W3 6= 0.
I Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

I Example: 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .

I Example: 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,
−3769372,−299154043,−12064147359, . . .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 4 / 52



Elliptic Divisibility Sequences Definitions

Definition and Examples

Definition
A sequence W is an elliptic divisibility sequence if for all positive
integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

I Generated by W1, . . . , W4 via the recurrence.
I By convention W1 = 1 and W2W3 6= 0.
I Example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

I Example: 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .

I Example: 1, 1,−3, 11, 38, 249,−2357, 8767, 496036,
−3769372,−299154043,−12064147359, . . .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 4 / 52



Elliptic Divisibility Sequences Definitions

Divisibility and Integrality

If W1, . . . , W4 are integer with W1 = 1, W2W3 6= 0, and W2|W4, then
the sequence . . .

1. is entirely integer;
2. satisfies the Divisibility Property

m|n =⇒ Wm|Wn ; and

3. if gcd(W3, W4) = 1, it satisfies the Strong Divisibility Property

Wgcd(m,n) = gcd(Wm, Wn) .
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Elliptic Divisibility Sequences Curve-Net Correspondence

Ψ Functions

Let σ be the Weierstrass sigma function associated to the complex
uniformization of an elliptic curve.

Definition

Ψn(z) =
σ(nz)

σ(z)n2

I Elliptic functions.
I Simple zeroes at non-zero n-torsion points.
I Divisor is

∑
P∈E [n]

(P)− n2(0).
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Elliptic Divisibility Sequences Curve-Net Correspondence

Curve-Sequence Correspondence

Theorem (M. Ward, 1948)
Let E be an elliptic curve defined over Q, and let z ∈ C correspond to a
rational point P on E. Then

Wn := Ψn(z)

forms an elliptic divisibility sequence.

Furthermore, every elliptic divisibility sequence satisfying W1 = 1,
W2W3 6= 0 arises in this way.

I We call this the sequence associated to E , P.
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Elliptic Divisibility Sequences Curve-Net Correspondence

Example: y2 + y = x3 + x2 − 2x , P = (0, 0)

W1 = 1

P = (0, 0)

W2 = 1

[2]P = (3, 5)

W3 = −3

[3]P =

(
−11

9
,
28
27

)

W4 = 11

[4]P =

(
114
121

,− 267
1331

)

W5 = 38

[5]P =

(
−2739

1444
,−77033

54872

)

W6 = 249

[6]P =

(
89566
62001

,−31944320
15438249

)

W7 = −2357

[7]P =

(
−2182983

5555449
,−20464084173

13094193293

)
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Elliptic Divisibility Sequences Curve-Net Correspondence

Example: y2 + y = x3 + x2 − 2x , P = (0, 0)

W1 = 1 P = (0, 0)
W2 = 1 [2]P = (3, 5)

W3 = −3 [3]P =

(
−11

32 ,
28
33

)
W4 = 11 [4]P =

(
114
112 ,−267

113

)
W5 = 38 [5]P =

(
−2739

382 ,−77033
383

)
W6 = 249 [6]P =

(
89566
2492 ,−31944320

2493

)
W7 = −2357 [7]P =

(
−2182983

23572 ,−20464084173
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)
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Elliptic Divisibility Sequences Curve-Net Correspondence

Division Polynomials

Any elliptic curve E has a Weierstrass equation. Suppose

E : y2 = x3 + Ax + B .

The elliptic functions Ψn(z; Λ) can be written as Division Polynomials
in terms of x , y , A, B:

Ψ1 = 1,

Ψ2 = 2y ,

Ψ3 = 3x4 + 6Ax2 + 12Bx − A2,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3),
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Elliptic Divisibility Sequences Curve-Net Correspondence

Coordinates of [n]P

Suppose we have
E : y2 = x3 + Ax + B .

Define
φn = xΨ2

n −Ψn+1Ψn−1 ,

4yωn = Ψn+2Ψ
2
n−1 −Ψn−2Ψ

2
n+1 .

Then we have

[n]P =

(
φn(P)

Ψn(P)2 ,
ωn(P)

Ψn(P)3

)
.
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Elliptic Divisibility Sequences Curve-Net Correspondence

Divisibility as a Curve Property I
1. We have the Identity Property:

Wn = 0 ⇐⇒ [n]P = 0 .

2. An elliptic curve with rational coefficients can be reduced modulo
a prime p by reducing coefficients and coordinates. The resulting
map is a homomorphism of groups. The associated elliptic
divisibility sequence also reduces modulo p.

3. The Identity Property holds on this new curve over Fp. Therefore
there is some Rank of Apparition r of p in the sequence Wn such
that

Wn ≡ 0 mod p ⇐⇒ n ≡ 0 mod r .

4. This implies the divisibility property for squarefree numbers.
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Elliptic Divisibility Sequences Curve-Net Correspondence

Divisibility as a Curve Property II

5. From the theory of formal groups, we also have the property that
for r the rank of apparition of p:

vp(Wkr ) = vp(Wr ) + vp(k)

6. Together with the last slide, this implies the divisibility of the
elliptic divisibility sequence.
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Elliptic Divisibility Sequences Curve-Net Correspondence

Singular Cases
In the case that one has a singular cubic curve

C : y2 = x3 + Ax + B

over Q and point P ∈ C(Q), one can still consider the sequence of
division polynomials Ψn(P).

Example (Singular Elliptic Divisibility Sequences)

C : y2 = x3, P = (1, 1)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .

C : y2 = x3 − 25
48

x +
125
864

, P =

(
17
12

,
3
2

)
1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, . . .
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Elliptic Nets Motivation

Can we do more?

The elliptic divisibility sequence is associated to the sequence of
points [n]P on the curve.

[n]P ↔ Wn

The Mordell-Weil group of an elliptic curve may have rank > 1. We
might dream of . . .

[n]P + [m]Q ↔ Wn,m
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Elliptic Nets Definitions
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Elliptic Nets Definitions

Elliptic Nets

Definition (KS)
Let R be an integral domain, and A a finite-rank free abelian group. An
elliptic net is a map W : A → R such that the following recurrence
holds for all p, q, r , s ∈ A.

W (p + q + s)W (p − q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0

I The recurrence generates the net from finitely many initial values.
I The recurrence implies the elliptic divisibility sequence recurrence

for A = Z.
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Elliptic Nets Definitions

Example

E : y2 + y = x3 + x2 − 2x ; P = (0, 0), Q = (1, 0)

↑
Q

4335 5959 12016 −55287 23921 1587077 −7159461
94 479 919 −2591 13751 68428 424345
−31 53 −33 −350 493 6627 48191
−5 8 −19 −41 −151 989 −1466
1 3 −1 −13 −36 181 −1535
1 1 2 −5 7 89 −149
0 1 1 −3 11 38 249

P →
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Elliptic Nets Definitions

Lattice Property

For an integer elliptic net, for each prime p, there exists a Lattice of
Apparition L ⊂ A such that

W (v) ≡ 0 mod p ⇐⇒ v ∈ L

The proof will wait until the curve-relationship is developed.
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Elliptic Nets Definitions

Scale Equivalence

I Let B, C be abelian groups. A quadratic function f : B → C is a
function such that for all x , y , z ∈ B,

f (x +y +z)− f (x +y)− f (y +z)− f (x +z)+ f (x)+ f (y)+ f (z) = 0 .

I For any elliptic net W : A → K , and quadratic f : A → K ∗, define
W f : A → K by

W f (v) = f (v)W (v) .

This function is an elliptic net.
I If two elliptic nets are related in the manner of W and W f for some

quadratic f , then we call them Scale Equivalent. This is clearly
an equivalence relation.
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Elliptic Nets Curve-Net Correspondence

Outline
Elliptic Divisibility Sequences
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Elliptic Nets Curve-Net Correspondence

Elliptic Functions Ψn

Ψv

Definition (M. Ward - Rank 1)

Ψn(z) =
σ(nz)

σ(z)n2

I Elliptic functions.
I The function is zero if nz = 0.
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Elliptic Nets Curve-Net Correspondence

Elliptic Functions Ψm,n

Ψv

Definition (Rank 2)

Ψn,m(z, w) =
σ(nz + mw)

σ(z)n2−nmσ(z + w)nmσ(w)m2−nm

I Elliptic functions in each variable.
I The function is zero if nz + mw = 0.
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Elliptic Nets Curve-Net Correspondence

Elliptic Functions Ψv

Definition (Rank k)

Ψv(z; Λ) =
σ(v1z1 + . . . + vkzk ; Λ)∏

1≤i≤k

σ(zi ; Λ)2v2
i −

∑k
j=1 vi vj

∏
1≤i,j≤k

i 6=j

σ(zi + zj ; Λ)vi vj

I Elliptic functions in each variable.
I The function is zero if v1z1 + . . . + vkzk = 0.
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Elliptic Nets Curve-Net Correspondence

Elliptic Nets from Elliptic Curves

Theorem (KS)
Let E be an elliptic curve defined over Q, and let u ∈ Ck correspond to
a vector of rational points P = (P1, . . . , Pk ) on E. Then

W (v) := Ψv(u)

forms an elliptic net.

I We call this the elliptic net associated to the curve E and points
P1, . . . , Pk .

I We call P1, . . . , Pk the basis of the elliptic net.
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Elliptic Nets Curve-Net Correspondence

Matrix and Homothety Actions on Elliptic Nets

Matrix Action:

I A k × l integer-coefficient matrix M acts on an elliptic net
W : Zk → K by

W M(v) = W (M(v)) .

Homothety Action:
I An element λ of K ∗ acts on an elliptic net W : Zk → K by

W λ(v) = λW (v) .
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Elliptic Nets Curve-Net Correspondence

Matrix and Homothety Actions on Elliptic Curves

Matrix Action:

I A k × l integer-coefficient matrix M takes Ek to E l (integer-scalar
multiplication and addition are defined via the curve group law).

Homothety Action:
I An element λ of K ∗ acts on an elliptic curve in Weierstrass form by

the change of coordinates

(x , y) 7→ (λ2x , λ3y) .
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Elliptic Nets Curve-Net Correspondence

Singularity

One can define polynomials ∆ and j in the values of an elliptic net.
For elliptic divisibility sequences, these polynomials are

∆ = (W 8
2 W 3

3 )−1(−W 4
4 − 3W 5

2 W 3
4 − 3W 10

2 W 2
4

− 8W 2
2 W 3

3 W 2
4 −W 15

2 W4 + 20W 7
2 W 3

3 W4

+ W 12
2 W 3

3 − 16W 4
2 W 6

3 )

j = 64∆−1(W 20
2 + 4W4W 15

2 − 16W 3
3 W 12

2

+ 6W 2
4 W 10

2 − 8W4W 3
3 W 7

2 + 4W 3
4 W 5

2 + 16W 6
3 W 4

2

+ 8W 2
4 W 3

3 W 2
2 + W 4

4 )3(W 4
3 W 8

2 )−3

An elliptic net is called singular if ∆ = 0.
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Elliptic Nets Curve-Net Correspondence

Curve-Net Correspondence

Theorem (KS)
Fix a field K . We have an explicit isomorphism of partially ordered sets{

scale equivalence classes of non-singular elliptic nets
W : Zk → K with W (v) 6= 0 for v = ei , 2ei , 3ei or ei ± ej

}

��
tuples (E ,Ω, P1, . . . , Pk ), where E is an elliptic curve
over K ,Ω is a holomorphic 1-form on E over K ,
Pi ∈ E(K )\(E(K )[2] ∪ E(K )[3]), and Pi 6= ±Pj for i 6= j



OO

Furthermore, the matrix and homothety actions on the sets preserve
the order and respect the isomorphism.
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Elliptic Nets Curve-Net Correspondence

Lattice Property as a Curve Property

The elliptic net analogue of the Identity Property:

W (v) ≡ 0 mod p

⇐⇒

[v1]P1 + [v2]P2 + · · ·+ [vk ]Pk = 0 on E(Fp)

This implies the Lattice Property.
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Elliptic Nets Curve-Net Correspondence

Net Polynomials

Theorem (KS)
Suppose

f (x , y) = y2 + a1xy + a3y − x3 − a2x2 − a4x − a6

gives an elliptic curve E : f (x , y) = 0. The net functions Ψv on E can
be expressed as polynomials in the ring

Z[a1, a2, a3, a4, a6][xi , yi ]
k
i=1

[
1

xi − xj

]
1≤i<j≤k

/
〈f (xi , yi)〉ki=1 .
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Elliptic Nets Curve-Net Correspondence

Net Polynomial Examples

Ψ−1,1 = x1 − x2 ,

Ψ2,1 = 2x1 + x2 −
(

y2 − y1

x2 − x1

)2

,

Ψ2,−1 = (y1 + y2)
2 − (2x1 + x2)(x1 − x2)

2 ,

Ψ1,1,1 =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3)
,

Ψ3,1 = (4x6
1 − 12x2x5

1 + 9x2
2 x4

1 + 4x3
2 x3

1 − 4y2
2 x3

1 + 8y2
1 x3

1 − 6x4
2 x2

1

+ 6y2
2 x2x2

1 − 18y2
1 x2x2

1 + 12y2
1 x2

2 x1 + x6
2 − 2y2

2 x3
2 − 2y2

1 x3
2

+ y4
2 − 6y2

1 y2
2 + 8y3

1 y2 − 3y4
1 )(x2 − x1)

−3 .
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Elliptic Nets Curve-Net Correspondence

Net Polynomial Examples

Ψ−1,1 = x1 − x2 ,

Ψ2,1 = 2x1 + x2 −
(

y2 − y1

x2 − x1

)2

,

Ψ2,−1 = (y1 + y2)
2 − (2x1 + x2)(x1 − x2)

2 ,

Ψ1,1,1 =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3)
,

Ψ3,1 = (4x6
1 − 12x2x5

1 + 9x2
2 x4

1 + 4x3
2 x3

1 − 4y2
2 x3

1 + 8y2
1 x3

1 − 6x4
2 x2

1

+ 6y2
2 x2x2

1 − 18y2
1 x2x2

1 + 12y2
1 x2

2 x1 + x6
2 − 2y2

2 x3
2 − 2y2

1 x3
2

+ y4
2 − 6y2

1 y2
2 + 8y3

1 y2 − 3y4
1 )(x2 − x1)

−3 .

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 32 / 52



Elliptic Nets Curve-Net Correspondence

A Note About the Proofs I

1. Curves give Nets over C: Check the recurrence – classical
complex elliptic function theory.

2. Find a sufficiently simple baseset for nets under the
recurrence: Complicated nested inductions.

3. Show the Ψ are polynomial of a nice form on the baseset:
Classical complex elliptic function theory.

4. Extend these net polynomials of the baseset to any field:
Choose an appropriate fibration of En over an appropriate ring.
Extend the divisors of the Ψ functions from the fibre over Q and
check that there are no vertical components.
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Elliptic Nets Curve-Net Correspondence

A Note About the Proofs II

5. Show the Ψ are polynomial of a nice form in general: Use the
inductive function theory of Step 2 to show that this type of
extension can be done in general.

6. Curves give Nets over any field: Pullback from the fibration
above via inclusion and base extension.

7. Nets give Curves in Rank 1 and 2: Explicitly calculate the
relevant curve and check agreement on the baseset, which
implies agreement everywhere.

8. Nets give Curves in All Ranks: Induction from the base case of
ranks 1 and 2 by considering subnets.
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relevant curve and check agreement on the baseset, which
implies agreement everywhere.

8. Nets give Curves in All Ranks: Induction from the base case of
ranks 1 and 2 by considering subnets.
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Periodicity Elliptic Divisibility Sequences

Ward’s Periodicity Property

If P is an r -torsion point, W is the elliptic net associated to E , P, then

W (r + k) is not necessarily equal to W (k) .

Example
E : y2 + y = x3 + x2 − 2x over F5.
P = (0, 0) has order 9.
The associated sequence is
0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 2, 1, 3, 4, . . .
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Periodicity Elliptic Divisibility Sequences

Periodicity for Elliptic Divisibility Sequences

Theorem (M. Ward, 1948)
Let W be an elliptic divisibility sequence, and p ≥ 3 a prime not
dividing W (2)W (3). Let r be the least positive integer such that
W (r) ≡ 0 mod p. Then there exist integers a, b such that for all n,

W (kr + n) ≡ W (n)ankbk2
mod p .

Example (E : y2 + y = x3 + x2 − 2x , P = (0, 0) over F5)
0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 2, 1, 3, 4, . . .
W (9k + n) ≡ W (n)4nk2k2

mod 5
W (10) ≡ 3W (1) mod 5
k = 2 : W (18 + n) ≡ W (n)42n24 ≡ W (n) mod 5
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Periodicity Elliptic Nets

Reducing a Net Modulo p

Corollary (KS - Corollory to Curve-Net Theorem)
Let E be an elliptic curve over K and let P1, . . . , Pk be K -points of E.
Let Ẽ and P̃1, . . . , P̃k be their reductions modulo a prime p. Then the
elliptic net associated to Ẽ , P̃1, . . . , P̃k is the reduction modulo p of the
elliptic net associated to E , P1, . . . , Pk .
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Periodicity Elliptic Nets

Example of Reduction Mod 5 of an Elliptic Net

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

The appropriate periodicity
property should tell how to obtain
the green values from the blue
values.
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Periodicity Elliptic Nets

Periodicity for Elliptic Nets

Theorem (KS)
Let W : Z2 → K be an elliptic net such that W (2, 0)W (0, 2) 6= 0.
Suppose W (r1, r2) = W (s1, s2) = 0. Then there exist
as, bs, cs, ar , br , cr , d ∈ K such that for all m, n, k , l ∈ Z,

W (kr1 + ls1 + m, kr2 + ls2 + n) = W (m, n)akm
r bkn

r ck2

r alm
s bln

s c l2
s dkl

In particular, if K is a finite field such as Fp, we obtain a statement
about reduction modulo p (i.e. for an integer elliptic net, if W (r1, r2) and
W (s1, s2) are trivial mod p, then the equation holds mod p).
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Periodicity Elliptic Nets

Example of Net Periodicity

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

ar = 2, br = 2, cr = 1

W (5, 4) ≡ W (1, 2)212211

≡ 3W (1, 2) mod 5

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 42 / 52



Periodicity Elliptic Nets

Example of Net Periodicity

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

ar = 2, br = 2, cr = 1

W (5, 4) ≡ W (1, 2)212211

≡ 3W (1, 2) mod 5

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 42 / 52



Periodicity Elliptic Nets

Example of Net Periodicity

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

ar = 2, br = 2, cr = 1

W (5, 4) ≡ W (1, 2)212211

≡ 3W (1, 2) mod 5

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 42 / 52



Periodicity Elliptic Nets

Example of Net Periodicity

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

ar = 2, br = 2, cr = 1

W (5, 4) ≡ W (1, 2)212211

≡ 3W (1, 2) mod 5

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 42 / 52



Periodicity Elliptic Nets

Example of Net Periodicity

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

ar = 2, br = 2, cr = 1

W (5, 4) ≡ W (1, 2)212211

≡ 3W (1, 2) mod 5

Katherine Stange (Brown University) Elliptic Nets ICMS Edinburgh 2007 42 / 52



Periodicity Elliptic Nets

Periodicity from Pairings

For those that know the Tate and Weil pairings, the periodicity contains
the values of these pairings. In the previous theorems,

I a = Tr (P, P)

I ar , as, br , bs are appropriate Tate pairings of multiples of P and Q
The Tate and Weil pairings can therefore be calculated from elliptic
nets efficiently. This is of interest to pairing-based elliptic-curve
cryptographers.
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Primitive Divisors Elliptic Divisibility Sequences

Primitive Divisors in Elliptic Divisibility Sequences

We may define a Primitive Divisor of a term Wn to be a prime p such
that p|Wn and p 6 |Wm for any 0 < m < n. We then have

Theorem (Silverman’s Elliptic Zsigmondy Theorem)
For every elliptic divisibility sequence there is a finite bound N such
that for any n > N, Wn has a primitive divisor.
There have since been many other results...
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Primitive Divisors Elliptic Nets

The Canonical Height
Recall that a point [n]P ∈ E(K ) has coordinates

[n]P =

(
An

D2
n
,

Bn

D3
n

)
.

So we define the Canonical Height to be

ĥ(P) = lim
N→∞

4−N log(D2N ) .

This is a quadratic form with an associated bilinear form 〈·, ·〉. For us,
what’s relevant is that

log |Dn| ∼ ĥ(P)n2 ,

and in fact for elliptic nets

log |Wv| ∼ ĥ(v · P) =
k∑

i,j=1

vivj
〈
Pi , Pj

〉
.
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Primitive Divisors Elliptic Nets

Primitive Divisors for Elliptic Nets

Possible Definition
Let p be a primitive divisor for a term Wv if

ĥ(v · P) = min
{

ĥ(u · P) such that p|Wu, u 6= 0
}

.

This agrees with the previous definition in the sequence case.

Question 1
Does there exist a bound N such that for all v of height exceeding N,
Wv has a primitive divisor?
Geometrically, “for all points P of sufficient height, is it true that P is the
point of least height in some kernel of reduction?”
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Primitive Divisors Elliptic Nets

Lattices of Apparition and Primitive Divisors

Taking a different approach...

Question 2
What lattices of apparition arise in an elliptic net?
Rank 1: all but finitely many lattices of apparition arise in an elliptic net.
Geometrically, this asks: What groups appear as kernels of
reduction mod p of a subgroup Γ ⊂ E(K ) as p ranges over primes?

Question 3
What indices of lattices of apparition arise in an elliptic net?
Rank 1: all but finitely many integers arise as indices (ranks of
apparition) for an elliptic net.
Geometrically, this asks: What group orders can be obtained as
images of reduction mod p of a subgroup Γ ⊂ E(K ) as p ranges over
primes?
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Primitive Divisors Primes

Primes in Elliptic Nets

I When are terms of an elliptic net actually prime?

I Heuristically, there are finitely many primes in an elliptic divisibility
sequence. This can be shown when the point is the image of an
appropriate isogeny.

I For elliptic nets in general? By a heuristic counting argument,
there should be infinitely many prime terms (except when the
points of the net are in the image of an appropriate isogeny).

I Proofs??
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Appendix For Further Reading

For Further Reading I

G. Everest, A. van der Poorten, I. Shparlinsky, T. Ward.
Recurrence Sequences.
Mathematical Surveys and Monographs, vol 104.
American Mathematical Society, 2003.

M. Ward.
Memoir on Elliptic Divisibility Sequences.
American Journal of Mathematics, 70:13–74, 1948.

K. Stange.
The Tate Pairing via Elliptic Nets.
To appear in PAIRING 2007, Springer Lecture Notes in Computer
Science.

Slides and Preprint at http://www.math.brown.edu/~stange/
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