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the Farey subdivision
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the Farey subdivision
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the Farey subdivision
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An arborist’s view of P1(Z)
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An arborist’s view of P1(Z)
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Money may not, but matrices do: SL+2 (Z)
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Money may not, but matrices do: SL+2 (Z)
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Diophantine approximation: the address of α ∈R
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Diophantine approximation: the address of α ∈R

0/1 1/1α 1/2

a
b
<

a+ c
b + d

<
c
d



Diophantine approximation: the address of α ∈R
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Diophantine approximation: the address of α ∈R
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Diophantine approximation: the address of α ∈R



Diophantine approximation: the address of α ∈R
Real number α
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Infinite path through tree:

La0 Ra1 La2 Ra3 · · ·

Matrix product:
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Farey tesselation of the upper half plane

Image of {0,∞} (and its hyperbolic geodesic) under PSL2(Z) action:
�
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z 7→ az + b
c z + d
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Geodesic viewpoint



The Farey subdivision: Continued fractions / Euclidean algorithm
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The Farey endpoints

endpoints of pierced bubbles are good approximations:
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Diophantine approximation and continued fractions
Question: For a given α ∈R, when does
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have finitely/infinitely many solutions p/q?

Answer (Dirichlet): infinitely many if and only if α is irrational.

Theorem
The convergents pn/qn given by the continued fraction algorithm are the best
approximations in the sense of:
É |z − pn/qn |< 1/|an q2

n |
É |qn z − pn |< ε|qn−1z − pn−1|
É |qn |> 1/εn

É If p, q ∈Z with |q |< c ′′|qn |, then |qn z − pn |< c ′|q z − p|.



Diophantine approximation: algebraic numbers are poorly approximable

Question 1: For a given α ∈R, when does
�

�

�

�
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α−
p
q

�

�

�

�

�

<
1
q2

have finitely/infinitely many solutions p/q?

Answer (Dirichlet): infinitely many if and only if α is irrational.

Question 2: What if we ask for < 1
q2+ε ?

Answer (Roth): if α is algebraic, only finitely many.



Can we approximate complex numbers?

Perhaps with Gaussian rationals?

Z[i] = {a+ b i : a, b ∈Z}
Q(i) = {a+ b i : a, b ∈Q}



RationalsQ

sized by norm of the denominator



Gaussian rationals

sized by norm of the denominator



3-dimensional Schmidt arrangement ofQ(i)



Schmidt arrangement ofQ(i)

orbit of real line under PSL2(Z[i])



the language for circles: Möbius transformations

PSL2(C) acts on the extended complex
plane, taking circle to circles:

�

α γ
β δ

�

7→
�

z 7→
αz + γ
βz +δ

�



Schmidt arrangement ofQ(i)

orbit of real line under PSL2(Z[i])



Schmidt arrangement ofQ(
p
−2)

orbit of real line under PSL2(Z[
p
−2])



Schmidt arrangement ofQ(
p
−7)

orbit of real line under PSL2(Z[
1+
p
−7
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Schmidt arrangement ofQ(
p
−11)

orbit of real line under PSL2(Z[
1+
p
−11
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Schmidt arrangement ofQ(
p
−6)

orbit of real line under PSL2(Z[
p
−6])



Schmidt arrangement ofQ(
p
−15)

orbit of real line under PSL2(Z[
1+
p
−15

2 ])



Schmidt arrangements

tangency points = rational points of trivial class

α/β ∈K such that (α,β) is principal

size of the pencil = 1/N (β)



continued fractions: Q(i) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
tangency points of the ‘moves’ are good approximations
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continued fractions: Q(i) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
tangency points of the ‘moves’ are good approximations



Euclideanity

Theorem (S.) Euclideanity = tangency (or topological) connectedness



Euclideanity

Theorem (S.) Euclideanity = tangency (or topological) connectedness



Euclideanity

The tangency graph GK of a Schmidt arrangement is:
�

ve r t i c e s = c i r c l e s
ed g e s = t an g enc i e s

�

.

Theorem (S.)
GK is connected if and only if OK is Euclidean.

Proof.

1. Connected component of bR is all circles reachable by combinations of elementary
matrices.

2. Thm of P.M. Cohn: OK is Euclidean if and only if SL2(OK ) is generated by
elementary matrices.



Euclideanity

Theorem (S.)
The Schmidt arrangement of K is connected
if and only if OK is Euclidean.

The ghost circle is the circle orthogonal to
the unit circle having center

(

1
2 +

p
∆
4 ∆≡ 0 (mod 4)

1
2 +

−∆−1
4
p
∆
∆≡ 1 (mod 4)

.

It exists only when OK is non-Euclidean.



Continued fractions and connectivity
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Continued fractions and connectivity



Continued fractions and connectivity



Continued fractions for the five Euclidean fields

Asmus Schmidt (1975-2011): Q(i),Q(
p
−3),Q(

p
−2),Q(

p
−7) andQ(

p
−11).



Continued fractions and connectivity



Continued fractions and connectivity



Continued fractions and connectivity



Question A: Non-Euclidean continued fractions?

Can we recover continued fractions when it is not connected?



The lattice associated to a circle

A circle is obtained by an element of PSL2(OK ).

1/f

M =




α γ
β δ




Consider the lattice Λ=βZ+δZ.
The order of Λ is

{r ∈ OK : rΛ⊂Λ}.

Then the order of Λ is an order in OK .
The orders of Z[τ] are Z[ f τ], where f ∈N is the conductor.
It so happens f is also the curvature of the circle!



Bijection: ideal classes of Z[ f τ] with circles of curvature f

circles = ideal classes of orders
(which are trivial when extended to maximal ideal)

�

α γ
β δ

�

←→ βZ+δZ

curvature of circle = conductor of the order



Bijection: ideal classes of Z[ f τ] with circles of curvature f

circles = ideal classes of orders
(which are trivial when extended to maximal ideal)
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Bijection: ideal classes of Z[ f τ] with circles of curvature f

2-part of the class group =maximal discrete extension of PSL2(OK )



Bijection: ideal classes of Z[ f τ] with circles of curvature f

2-part of the class group =maximal discrete extension of PSL2(OK )



Question B: non-principle ideal classes?

Is it possible to see the rest of the class group?



Extended Schmidt arrangements

Daniel Martin has found a way to see the rest of the class group and recover continued
fractions.



Drawing Schmidt arrangements

Theorem (Martin)
The circles of the Gaussian Schmidt arrangement are exactly those of center (x/b , y/b ) and
curvature b such that

x2+ y2 ≡ 1 (mod 4b )



Minkowski space and the hyperboloid model

x2+ y2+ z2− t 2

vector outside
the light cone ↔ plane slicing

the light cone ↔ hyperbolic geodesic
line (plane)

lattice points outside
the light cone ↔ planes slicing

the light cone ↔ circle packing



Minkowski space and the hyperboloid model

x2+ y2+ 2b b ′

vector outside
the light cone ↔ plane slicing

the light cone ↔ hyperbolic geodesic
line (plane)

lattice points outside
the light cone ↔ planes slicing

the light cone ↔ circle packing



Drawing Schmidt arrangements

Theorem (Martin)
The circles of the Gaussian Schmidt arrangement are exactly those arising from vectors
v := (x, y, b , b ′) with |v|2 = 1 and b even.

In other words, the intersection of a lattice with the one-sheeted hyperboloid |v|2 = 1.



The sheet |v|2 = 1 forQ(
p
−23)



The sheet |v|2 = 2 forQ(
p
−23)



The sheet |v|2 = 3 forQ(
p
−23)



The sheet |v|2 = 1 and 2 forQ(
p
−23)



Extended Schmidt arrangements

It is possible to define (Martin) a set of matrices giving these as an orbit:

MD =
¨

M =
�

a b
c d

�

:

�

�

�

�

�

�

�

�

�

�

det(M )
(a, b , c , d )2

�

�

�

�

�

�

�

�

�

�

=D

«



Extended continued fractions

Theorem (Martin)
There is a continued fraction algorithm, formed by stepping from circle to circle in these
arrangements, so that the tangency points pn/qn along the way are good approximations in
all the classical senses:
É |z − pn/qn |< c/|an q2

n |
É |qn z − pn |< ε|qn−1z − pn−1|
É |qn |> 1/εn

É If p, q ∈ OK with |q |< c ′′|qn |, then |qn z − pn |< c ′|q z − p|.



The full class group inQ(
p
−71)


