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the Farey subdivision
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the Farey subdivision
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An arborist’s view of P!(Z)
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An arborist’s view of P}(Z)
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Money may not, but matrices do: SL; (Z)
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Diophantine approximation: the address of « € R
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Diophantine approximation: the address of « € R
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Farey tesselation of the upper half plane
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Image of {0, 00} (and its hyperbolic geodesic) under PSL,(Z) action:
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Geodesic viewpoint
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The Farey subdivision: Continued fractions / Euclidean algorithm
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The Farey endpoints
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endpoints of pierced bubbles are good approximations:
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Diophantine approximation and continued fractions

Question: For a given @ € R, when does

have finitely/infinitely many solutions p/g?

Answer (Dirichlet): infinitely many if and only if  is irrational.

Theorem
The convergents p,,/q,, given by the continued fraction algorithm are the best
approximations in the sense of:

> |z —pa/a,l < 1/la,q;|

> 19,2 —pul <elg,_1z—p,_il

> g, >1/e"

> If p,q €Zwith|q| < "|q,| then |q,z— p,| < 'lgz—p|.



Diophantine approximation: algebraic numbers are poorly approximable

Question 1: For a given @ € R, when does

have finitely/infinitely many solutions p/g?
Answer (Dirichlet): infinitely many if and only if  is irrational.

Question 2: What if we ask for < q2—1+(?

Answer (Roth): if « is algebraic, only finitely many.



Can we approximate complex numbers?

Perhaps with Gaussian rationals?

Zlil]={a+bi:a,beZ}
QGt)={a+bi:a,beQ}



Rationals

sized by norm of the denominator



Gaussian rationals
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sized by norm of the denominator



3-dimensional Schmidt arrangement of Q(z)




Schmidt arrangement of Q(z)
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the language for circles: Mobius transformations

PSL,(C) acts on the extended complex
plane, taking circle to circles:

(5 5) = (=555




Schmidt arrangement of Q(z)
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Schmidt arrangement of Q(y/—2)
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Schmidt arrangement of Q( v—=7)
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Schmidt arrangement of Q(+/—11)
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Schmidt arrangement of Q(/—6)

orbit of real line under PSL,(Z[v/—6])
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Schmidt arrangement of Q(1/—15)
orbit of real line under PSL,(Z[




Schmidt arrangements
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tangency points = rational points of trivial class
a/ B € K such that (a, 3) is principal

size of the pencil = 1/N(J3)



continued fractions: Q(z) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
tangency points of the ‘moves’ are good approximations
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continued fractions: Q(z) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
tangency points of the ‘moves’ are good approximations
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Euclideanity
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Theorem (S.) Euclideanity = tangency (or topological) connectedness



Euclideanity

The tangency graph Gy of a Schmidt arrangement is:

{ vertices = circles }

edges = tangencies

Theorem (S.)
Gy is connected if and only if Oy is Euclidean.

Proof.

1. Connected component of R is all circles reachable by combinations of elementary
matrices.
2. Thm of PM. Cohn: Oy is Euclidean if and only if SL,( 0 ) is generated by

elementary matrices.

O



Euclideanity

Theorem (S.)

The Schmidt arrangement of K is connected
if and only if Oy is Euclidean.

The ghost circle is the circle orthogonal to
the unit circle having center

{ %-i—g A=0 (mod4)

/N B .
%+4_\/Z1 A=1 (mod4)

It exists only when O is non-Euclidean.




Continued fractions and connectivity
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Continued fractions and connectivity
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Continued fractions and connectivity
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Continued fractions and connectivity
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Continued fractions and connectivity
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Continued fractions for the five Euclidean fields

Asmus Schmidt (1975-2011): Q(2), Q(v/=3), Q(v/—2), Q(+/—7) and Q(+/—11).



Continued fractions and connectivity
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Continued fractions and connectivity




Continued fractions and connectivity




Question A: Non-Euclidean continued fractions?

©oR Paod

Can we recover continued fractions when it is not connected?
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The lattice associated to a circle

A circle is obtained by an element of PSL,(0k).

O

Consider the lattice A = SZ + 8 Z.
The order of A is

{reOr:rAC A}

Then the order of A is an order in 0.
The orders of Z[ t] are Z[ f ], where f € N is the conductor.
It so happens f is also the curvature of the circle!



Bijection: ideal classes of Z[ f =] with circles of curvature f
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circles = ideal classes of orders
(which are trivial when extended to maximal ideal)

<2 g) — BL+38Z

curvature of circle = conductor of the order
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Bijection: ideal classes of Z[ f =] with circles of curvature f
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curvature of circle = conductor of the order



Bijection: ideal classes of Z[ f 7] with circles of curvature f

2-part of the class group = maximal discrete extension of PSL,(0k)



Bijection: ideal classes of Z[ f =] with circles of curvature f

2-part of the class group = maximal discrete extension of PSL,(0k)



Question B: non-principle ideal classes?

Is it possible to see the rest of the class group?



Extended Schmidt arrangements

O (B>
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Daniel Martin has found a way to see the rest of the class group and recover continued
fractions.



Drawing Schmidt arrangements

Theorem (Martin)

The circles of the Gaussian Schmidt arrangement are exactly those of center (x /b,y [b) and

curvature b such that

2

1 (mod 4b)

x2+y



Minkowski space and the hyperboloid model
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Minkowski space and the hyperboloid model

X+ +2bb’

vector outside plane slicing - hyperbolic geodesic
the light cone the light cone line (plane)

lattice points outside planes slicing

the light cone 7 thelightcone circle packing
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Drawing Schmidt arrangements

Theorem (Martin)

The circles of the Gaussian Schmidt arrangement are exactly those arising from vectors

1 and b even.

(x,7,b,b") with |v|?
In other words, the intersection of a lattice with the one-sheeted hyperboloid |v|* = 1.

V=



The sheet |[v]* = 1 for Q(+/—23)




The sheet |[v]* =2 for Q(+/—23)




The sheet |[v]* =3 for Q(+/—23)
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1 and 2 for Q(

The sheet |v|?
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Extended Schmidt arrangements

It is possible to define (Martin) a set of matrices giving these as an orbit:

ﬂD={M=<j Z): %H:D}




Extended continued fractions

Theorem (Martin)
There is a continued fraction algorithm, formed by stepping from circle to circle in these
arrangements, so that the tangency points p,, /q,, along the way are good approximations in
all the classical senses:

> 12— pofa,] < /land]]

> |9,z —ppl <elgy_12— Pyl

> |, >1/¢"

> If p,q € Og with |q] < "|q,|. then |q,z — p,| < '|lgz— p|
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