Illustrating the arithmetic of imaginary quadratic fields

Katherine E. Stange

Colloquium, Montana State University, November 4, 2019

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

An arborist's view of $\mathbb{P}^1(\mathbb{Z})$

An arborist's view of $\mathbb{P}^1(\mathbb{Z})$

Money may not, but matrices do: $SL_2^+(\mathbb{Z})$

Money may not, but matrices do: $SL_2^+(\mathbb{Z})$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

Diophantine approximation: the address of $\alpha \in \mathbb{R}$ Real number α

Infinite path through tree:

 $L^{a_0}R^{a_1}L^{a_2}R^{a_3}\cdots$

Matrix product:

$$\begin{pmatrix} 1 & 0 \\ a_0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a_2 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_3 \\ 0 & 1 \end{pmatrix} \cdots$$

Farey tesselation of the upper half plane

Image of $\{0,\infty\}$ (and its hyperbolic geodesic) under $\text{PSL}_2(\mathbb{Z})$ action:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \mapsto \quad \left(z \mapsto \frac{az+b}{cz+d} \right)$$

Geodesic viewpoint

The Farey subdivision: Continued fractions / Euclidean algorithm

$$\begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a_0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a_2 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_3 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & a_n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The Farey endpoints

endpoints of pierced bubbles are good approximations:

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$$

Diophantine approximation and continued fractions Question: For a given $\alpha \in \mathbb{R}$, when does

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$$

have finitely/infinitely many solutions p/q?

Answer (Dirichlet): infinitely many if and only if α is irrational.

Theorem

The convergents p_n/q_n given by the continued fraction algorithm are the best approximations in the sense of:

- ► $|z p_n/q_n| < 1/|a_n q_n^2|$
- $\blacktriangleright |q_n z p_n| < \varepsilon |q_{n-1} z p_{n-1}|$
- ► $|q_n| > 1/\varepsilon^n$
- If $p,q \in \mathbb{Z}$ with $|q| < c''|q_n|$, then $|q_nz p_n| < c'|qz p|$.

Diophantine approximation: algebraic numbers are poorly approximable

Question 1: For a given $\alpha \in \mathbb{R}$, when does

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$$

have finitely/infinitely many solutions p/q?

Answer (Dirichlet): infinitely many if and only if α is irrational.

Question 2: What if we ask for $<\frac{1}{q^{2+\epsilon}}$?

Answer (Roth): if α is algebraic, only finitely many.

Can we approximate complex numbers?

Perhaps with Gaussian rationals?

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$$
$$\mathbb{Q}(i) = \{a + bi : a, b \in \mathbb{Q}\}$$

sized by norm of the denominator

Gaussian rationals

sized by norm of the denominator

3-dimensional Schmidt arrangement of $\mathbb{Q}(i)$

Schmidt arrangement of $\mathbb{Q}(i)$

orbit of real line under $PSL_2(\mathbb{Z}[i])$

the language for circles: Möbius transformations

 $\mathrm{PSL}_2(\mathbb{C})$ acts on the extended complex plane, taking circle to circles:

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \quad \mapsto \quad \left(z \mapsto \frac{\alpha z + \gamma}{\beta z + \delta} \right)$$

Schmidt arrangement of $\mathbb{Q}(i)$

orbit of real line under $PSL_2(\mathbb{Z}[i])$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-2})$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-7})$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-6})$

orbit of real line under $PSL_2(\mathbb{Z}[\sqrt{-6}])$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-15})$

Schmidt arrangements

continued fractions: $\mathbb{Q}(i)$ in \mathbb{C}

Asmus Schmidt, 1975: continued fractions by zooming in through the regions tangency points of the 'moves' are good approximations

continued fractions: $\mathbb{Q}(i)$ in \mathbb{C}

Asmus Schmidt, 1975: continued fractions by zooming in through the regions tangency points of the 'moves' are good approximations

Euclideanity

Theorem (S.) Euclideanity = tangency (or topological) connectedness

Euclideanity

Theorem (S.) Euclideanity = tangency (or topological) connectedness

Euclideanity

The *tangency graph* G_K of a Schmidt arrangement is:

 $\left\{\begin{array}{l} vertices = circles\\ edges = tangencies \end{array}\right\}.$

Theorem (S.) G_K is connected if and only if \mathcal{O}_K is Euclidean.

Proof.

- 1. Connected component of $\widehat{\mathbb{R}}$ is all circles reachable by combinations of elementary matrices.
- 2. Thm of P.M. Cohn: \mathcal{O}_K is Euclidean if and only if $SL_2(\mathcal{O}_K)$ is generated by elementary matrices.

Euclideanity

Theorem (S.)

The Schmidt arrangement of K is connected if and only if \mathcal{O}_K is Euclidean.

The *ghost circle* is the circle orthogonal to the unit circle having center

$$\begin{cases} \frac{1}{2} + \frac{\sqrt{\Delta}}{4} & \Delta \equiv 0 \pmod{4} \\ \frac{1}{2} + \frac{-\Delta - 1}{4\sqrt{\Delta}} & \Delta \equiv 1 \pmod{4} \end{cases}$$

It exists only when \mathcal{O}_K is non-Euclidean.

Continued fractions for the five Euclidean fields

Asmus Schmidt (1975-2011): $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{-2})$, $\mathbb{Q}(\sqrt{-7})$ and $\mathbb{Q}(\sqrt{-11})$.

Question A: Non-Euclidean continued fractions?

Can we recover continued fractions when it is not connected?

The lattice associated to a circle

A circle is obtained by an element of $PSL_2(\mathcal{O}_K)$.

Consider the lattice $\Lambda = \beta \mathbb{Z} + \delta \mathbb{Z}$. The *order* of Λ is

 $\{r \in \mathcal{O}_K : r\Lambda \subset \Lambda\}.$

Then the order of Λ is an order in \mathcal{O}_K . The orders of $\mathbb{Z}[\tau]$ are $\mathbb{Z}[f\tau]$, where $f \in \mathbb{N}$ is the *conductor*. It so happens f is also the curvature of the circle!

circles = ideal classes of orders (which are trivial when extended to maximal ideal)

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \quad \longleftrightarrow \quad \beta \mathbb{Z} + \delta \mathbb{Z}$$

curvature of circle = conductor of the order

circles = ideal classes of orders (which are trivial when extended to maximal ideal)

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \quad \longleftrightarrow \quad \beta \mathbb{Z} + \delta \mathbb{Z}$$

curvature of circle = conductor of the order

2-part of the class group = maximal discrete extension of $PSL_2(\mathcal{O}_K)$

2-part of the class group = maximal discrete extension of $PSL_2(\mathcal{O}_K)$

Question B: non-principle ideal classes?

Is it possible to see the rest of the class group?

Extended Schmidt arrangements

Daniel Martin has found a way to see the rest of the class group and recover continued fractions.

Drawing Schmidt arrangements

Theorem (Martin)

The circles of the Gaussian Schmidt arrangement are exactly those of center (x/b, y/b) and curvature b such that

 $x^2 + y^2 \equiv 1 \pmod{4b}$

Minkowski space and the hyperboloid model

$$x^2 + y^2 + z^2 - t^2$$

Minkowski space and the hyperboloid model

 $x^2 + y^2 + 2bb'$

Drawing Schmidt arrangements

Theorem (Martin)

The circles of the Gaussian Schmidt arrangement are exactly those arising from vectors $\mathbf{v} := (x, y, b, b')$ with $|\mathbf{v}|^2 = 1$ and b even.

In other words, the intersection of a lattice with the one-sheeted hyperboloid $|\mathbf{v}|^2 = 1$.

The sheet $|\mathbf{v}|^2 = 1$ for $\mathbb{Q}(\sqrt{-23})$ 88 8+ 8 Q v v ഫ് \$ 8 å 8 Ş ŵ ∞ 000 8 0 Ô ÕÕ g ò 000 g 8 ò $\varphi \varphi$ 8 8 ð డి ക ஃ

The sheet $|\mathbf{v}|^2 = 2$ for $\mathbb{Q}(\sqrt{-23})$

Extended Schmidt arrangements

It is possible to define (Martin) a set of matrices giving these as an orbit:

$$\mathcal{M}_D = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \left\| \frac{\det(M)}{(a, b, c, d)^2} \right\| = D \right\}$$
Extended continued fractions

Theorem (Martin)

There is a continued fraction algorithm, formed by stepping from circle to circle in these arrangements, so that the tangency points p_n/q_n along the way are good approximations in all the classical senses:

|z − p_n/q_n| < c/|a_nq_n²|
|q_nz − p_n| < ε|q_{n-1}z − p_{n-1}|
|q_n| > 1/εⁿ
If p, q ∈ O_K with |q| < c''|q_n|, then |q_nz − p_n| < c'|qz − p|.

