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Definition 0.1. An elliptic divisibility sequences is a sequence
satisfying the recurrence

Wm+nWm—nW7~2 - Wm—i-er—rWs - Wn—i-rWn—rWT%
Example 0.2.
1,1,-3,11,38,249, —2357, . ..

Definition 0.3. The n-th division polynomial of an elliptic curve
E : f(x,y) =0 in Weierstrass form is the element

U, € K[il?,y]/(f(ﬂf,y) — O)
such that
div(P,) = ) (P)—n*0)
PeE[n]
and chosen so that, written as a rational function of x,y €
K(E), it is of the form

n2—
" na" T + (lower powers of x)  n odd,
n pr—

n2
Y (na:T + (lower powers of :17)) n even.
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(Writing W,, in this form is always possible.)
Example 0.4. For y* = 2° + Ax + B,

Uy =1,Vy =2y, U3 = 3z + 642> + 12Bx — A
Theorem 0.5 (M. Ward, 1948). Fiz a curve E defined over Q
and point P € E(Q) satisfying P, 2| P, [3]P # 0. The sequence

W, =V, (P)
15 an elliptic divisibility sequence.
Furthermore, every elliptic divisibility sequence with Wi = 1
and WoWs3 £ 0 arises from an elliptic curve in this way.
This is called the elliptic divisibility sequence associated to E,P.
Observe that [n]P = O if and only if ¥,,(P) = 0. We may begin
a dictionary between sequences and curves...

elliptic curve F

: ellipic divisibility sequence )
and point P such that > .
- mpp 5P 20 ( with W, = 1, WalWs # 0

n]P =0 — W =0 VkeZ
Consider the multiples of P.

(Example on overhead slides.)

Usually there are some small cancellations of numerator and de-
nominator, but modulo a few primes we can “see” the elliptic divis-
ibility sequence in x(P).

Therefore we may add to the dictionary...

over Q
()P = (%, %) — W,| =d
up to oo primes

S8
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Proposition 0.6. Let E be a curve in Weierstrass form over

Q. Let E be its reduction modulo a prime p. If W is an integer
valued elliptic divisibility sequence associated to E, P, then W
mod p s the elliptic divisibility sequence associated to E, P.

Proof sketch: The W, are always Z-coefficient polynomials in x, y
and the coefficients the Weierstrass equation. So we happily just take
everything mod p.

Now we may add...
W ek
n]P =0 — Wy VEkeZ
up to 9o primes

In fact we have the slightly stronger criterion that
nlm = W,|W,,..

Question (mused by Elkies in 2001, and myself in 2004): Can you
generalise division polynomials to higher dimensions?

That is, we can collect our properties for elliptic divisibility se-
quences and make a wish list for dimension 2 (or higher dimensions)...

Are there functions U, ,, € K(FE?) such that ...

1. W, (P, Q) = 0 exactly when [m|P + [n]@Q = O, i.e. div(V,,,)
has positive part

([n] P +[m]Q = 0)

2. W, are generated from finitely many terms by a recurrence
relation



3. [Wmn(P, Q)| = denominator(z([n|P + [m|Q)) up to ﬁnitels;

many primes

4. These are also defined over finite fields, so that the bi-sequence

U, (P, Q) associated to E, P, () reduces modulo a prime p to
that associated to E, P, Q.
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Theorem 0.7 (KS). “Yes.” There are functions satisfying the
above and the diwvisors of U, ., are of a special form. In two
dimensions it 18

([P + [m]Q = 0) = (n* — nm)({0} x E)
— (m* —nm)(E x {O}) —nm(P +Q = 0)
Furthermore, the WV, ,, satisfy the recurrence
Wp+q+s)Wip—gW(r+s)W(s)

+Wi(g+r+s)Wig—r)W(p+s)W(p)
+W(ir+p+s)Wr—pWi(g+s)Wi(g) =0. (1)



The dictionary of relationships can be adjusted to the
two-dimensional case:

llipic nets with
elliptic curve ellipic nets wi

and point P such that VN ?/11;‘0/: ?/01’1
P,Q,P+ O = Wi1 =1,
Q Q # Wy 40
n]P +[m|Q =0 — Wm =0
over Q
WP Q= (5.5) e Wl =d
. . W eZ
[n]P + [m]Q =0 — p‘Wn,m

(The latter two up to finitely many primes.)
These are in fact defined over any field.
(Example on slides.)

Show patterns:

e Elliptic divisibility sequences show up as subsequences.

e Translated elliptic divisibility sequences are lines not through
origin.

e The ‘divisibility property’ is now a lattice property for primes.

e The net may not be periodic with respect to this lattice (it is
not a function of the point [n|P + [m]Q).
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e Eixample of reduction modulo a prime, where net must be peri-

odic modulo some sublattice of this lattice.

We now look at the explanation for this ‘failure’ of periodicity.

Definition 0.8. A generalised Jacobian X s an extension of an
abelian variety A by an algebraic group B:

l—=B—-X—-A—1

For each pair R, S € I, there exists a generalised Jacobian Xp g
defined as follows:

1—-G,, — Xp—> FE — 1.

Xps =Gy, x E as aset, with operation

(a, P) + (b, Q) = (abfro(R) fra(S) ™, P+ Q)

where
div(fpg) = (P) + (Q) — (P + Q) — (0)

Note that fpg depends only on P, (), and the constant factor
doesn’t matter.

Theorem 0.9. Let T be any collection of n non-zero points in
E (such that no two are equal or inverses) which generate a
subgroup containing P,Q, R. Let p,q,r be such that p-T = P,
q-T=Q, andr-T = R.
Then,
fro(R) = CgT@' +p+q)Wr(r)
T(r + p)Wr(r +q)

where ¢ 15 a constant that does not depend on R.




Let ay, (R, S) be such that

m(17 P) + ’I”L(l, Q) - (an,m(Ra S)a O)

on Xgs.

Theorem 0.10. Let r = (r1,7r9) be such that [r]P + [rs]@Q = O.
Then

S

— 51,452
= a,la*cy

where

ar = a((2P) = (P)

) (i) (
be = anl(121Q) — (Q) (1) (wix2
Cr = ar((P + Q) — (O))W(2> 1)T1W(17 2)T2

(IMustration in overhead slides.)

So this can be viewed in two interesting ways: first, the generalised
Jacobians explain the ‘extra information’ in the nets; second, the nets
give a way to calculate the group law on the generalised Jacobian
using addition in the field.



