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Definition 0.1. An elliptic divisibility sequences is a sequence

satisfying the recurrence

Wm+nWm−nW
2
r = Wm+rWm−rW

2
n −Wn+rWn−rW

2
m

Example 0.2.

1, 1,−3, 11, 38, 249,−2357, . . .

Definition 0.3. The n-th division polynomial of an elliptic curve

E : f (x, y) = 0 in Weierstrass form is the element

Ψn ∈ K̄[x, y]/(f (x, y) = 0)

such that

div(Ψn) =
∑

P∈E[n]

(P )− n2(O)

and chosen so that, written as a rational function of x, y ∈
K̄(E), it is of the form

Ψn =

 nx
n2−1

2 + (lower powers of x) n odd,

y
(
nx

n2
2 + (lower powers of x)

)
n even.
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(Writing Ψn in this form is always possible.)

Example 0.4. For y2 = x3 + Ax + B,

Ψ1 = 1, Ψ2 = 2y, Ψ3 = 3x4 + 6Ax2 + 12Bx− A2

Theorem 0.5 (M. Ward, 1948). Fix a curve E defined over Q
and point P ∈ E(Q) satisfying P, [2]P, [3]P 6= 0. The sequence

Wn = Ψn(P )

is an elliptic divisibility sequence.

Furthermore, every elliptic divisibility sequence with W1 = 1

and W2W3 6= 0 arises from an elliptic curve in this way.

This is called the elliptic divisibility sequence associated to E,P.

Observe that [n]P = O if and only if Ψn(P ) = 0. We may begin

a dictionary between sequences and curves... elliptic curve E

and point P such that

P, [2]P, [3]P 6= O

 ↔
(

ellipic divisibility sequence

with W1 = 1, W2W3 6= 0

)
[n]P = O ↔ Wnk = 0 ∀k ∈ Z

Consider the multiples of P .

(Example on overhead slides.)

Usually there are some small cancellations of numerator and de-

nominator, but modulo a few primes we can “see” the elliptic divis-

ibility sequence in x(P ).

Therefore we may add to the dictionary...

[n]P =
(

a
d2 ,

b
d3

) over Q
←→

up to 6∞ primes

|Wn| = d
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Proposition 0.6. Let E be a curve in Weierstrass form over

Q. Let Ẽ be its reduction modulo a prime p. If W is an integer

valued elliptic divisibility sequence associated to E, P , then W

mod p is the elliptic divisibility sequence associated to Ẽ, P̃ .

Proof sketch: The Ψn are always Z-coefficient polynomials in x, y

and the coefficients the Weierstrass equation. So we happily just take

everything mod p.

Now we may add...

[n]P̃ = Õ

W ∈ Z
←→

up to 6∞ primes

p|Wnk ∀k ∈ Z

In fact we have the slightly stronger criterion that

n|m =⇒ Wn|Wm.

Question (mused by Elkies in 2001, and myself in 2004): Can you

generalise division polynomials to higher dimensions?

That is, we can collect our properties for elliptic divisibility se-

quences and make a wish list for dimension 2 (or higher dimensions)...

Are there functions Ψm,n ∈ K̄(E2) such that . . .

1. Ψm,n(P, Q) = 0 exactly when [m]P + [n]Q = O, i.e. div(Ψm,n)

has positive part

([n]P + [m]Q = O)

2. Ψm,n are generated from finitely many terms by a recurrence

relation
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3. |Ψm,n(P, Q)| = denominator(x([n]P + [m]Q)) up to finitely

many primes

4. These are also defined over finite fields, so that the bi-sequence

Ψm,n(P, Q) associated to E, P, Q reduces modulo a prime p to

that associated to Ẽ, P̃ , Q̃.

. . .?

Theorem 0.7 (KS). “Yes.” There are functions satisfying the

above and the divisors of Ψn,m are of a special form. In two

dimensions it is

([n]P + [m]Q = O)− (n2 − nm)({O} × E)

− (m2 − nm)(E × {O})− nm(P + Q = O)

Furthermore, the Ψm,n satisfy the recurrence

W (p + q + s)W (p− q)W (r + s)W (s)

+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0. (1)
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The dictionary of relationships can be adjusted to the

two-dimensional case:

 elliptic curve E

and point P such that

P, Q, P ±Q 6= O

 ↔


ellipic nets with

W1,0 = W0,1

= W1,1 = 1,

W1,−1 6= 0


[n]P + [m]Q = O ↔ Wn,m = 0

[n]P + [m]Q =
(

a
d2 ,

b
d3

) over Q
←→ |Wn,m| = d

[n]P̃ + [m]Q̃ = Õ
W ∈ Z
←→ p|Wn,m

(The latter two up to finitely many primes.)

These are in fact defined over any field.

(Example on slides.)

Show patterns:

• Elliptic divisibility sequences show up as subsequences.

• Translated elliptic divisibility sequences are lines not through

origin.

• The ‘divisibility property’ is now a lattice property for primes.

• The net may not be periodic with respect to this lattice (it is

not a function of the point [n]P + [m]Q).
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• Example of reduction modulo a prime, where net must be peri-

odic modulo some sublattice of this lattice.

We now look at the explanation for this ‘failure’ of periodicity.

Definition 0.8. A generalised Jacobian X is an extension of an

abelian variety A by an algebraic group B:

1→ B → X → A→ 1

For each pair R,S ∈ E, there exists a generalised Jacobian XR,S

defined as follows:

1→ Gm → XD → E → 1.

XR,S = Gm × E as a set, with operation

(a, P ) + (b, Q) = (abfP,Q(R)fP,Q(S)−1, P + Q)

where

div(fP,Q) = (P ) + (Q)− (P + Q)− (O)

Note that fP,Q depends only on P, Q, and the constant factor

doesn’t matter.

Theorem 0.9. Let T be any collection of n non-zero points in

E (such that no two are equal or inverses) which generate a

subgroup containing P, Q,R. Let p,q, r be such that p ·T = P ,

q ·T = Q, and r ·T = R.

Then,

fP,Q(R) = c
WT(r + p + q)WT(r)

WT(r + p)WT(r + q)

where c is a constant that does not depend on R.
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Let αn,m(R,S) be such that

m(1, P ) + n(1, Q) = (αn,m(R,S), O)

on XR,S.

Theorem 0.10. Let r = (r1, r2) be such that [r1]P + [r2]Q = O.

Then
W (r + s)

W (s)
= as1

r as2
r cr

where

ar = αr(([2]P )− (P ))
(

W (3,0)
W (2,0)

)r1
(

W (2,1)
W (2,0)

)r2

br = αr(([2]Q)− (Q))
(

W (0,3)
W (0,2)

)r1
(

W (1,2)
W (0,2)

)r2

cr = αr((P + Q)− (O))W (2, 1)r1W (1, 2)r2

(Illustration in overhead slides.)

So this can be viewed in two interesting ways: first, the generalised

Jacobians explain the ‘extra information’ in the nets; second, the nets

give a way to calculate the group law on the generalised Jacobian

using addition in the field.


