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1 Introduction

These are notes to myself and our research seminar on Higher composition
laws I: A new view on Gauss composition, and quadratic generalizations, M.
Bhargava, Annals of Mathematics, 159 (2004), 217–250.

2 Composition of Quadratic Forms – Classical View-
point

Where by ‘classical,’ I mean before 2000.

2.1 Quadratic forms

There are some standard facts that need to be collected about quadratic
forms. An integral n-ary k-ic form is a Z-linear combination of monomials
of degree k in n variables. We will concern ourselves with integral binary
quadratic forms, which can all be expressed as

aX2 + bXY + cY 2, a, b, c ∈ Z.

(Note that some authors require b to be even; we do not.) Such a form is
primitive if gcd(a, b, c) = 1.

Two such forms are GL2(Z)-equivalent if one can be obtained from an-
other by an invertible change of variables(

X ′

Y ′

)
=

(
a b
c d

)(
X
Y

)
,

i.e. where a, b, c, d ∈ Z, ad − bc = ±1. They are SL2(Z)-equivalent if we
further require ad − bc = 1. In other words, both SL2(Z) and GL2(Z) act
on the collection of primitive integral binary quadratic forms.
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Each binary quadratic form has a discriminant b2−4ac, which is invari-
ant under the GL2(Z)-action. Hence each equivalence class has a discrimi-
nant.

The equivalence classes of forms of discriminantD form a finite set, which
we will denote Q(D). To see that it is finite, one studies the reduction of
quadratic forms, which I’ll briefly review now.

A quadratic form aX2 + bXY + cY 2 can be viewed as a function

fa,b,c : Z2 → Z, [x, y] 7→ ax2 + bxy + cy2.

This is well defined because it is degree 2 and therefore blind to the change
of sign (x, y) 7→ (−x,−y). The function fa,b,c is an example of a quadratic
form in the sense of a function satisfying

1. f(nx) = n2f(x), n ∈ Z for all x,

2. B(x, y) = f(x+ y)− f(x)− f(y) is a symmetric bilinear form.

Such a function is called non-degenerate if f(x) 6= 0 for all x 6= 0. It is
positive (negative) definite if f(x) > 0 (f(x) < 0) for all x 6= 0. It is
indefinite if it is non-degenerate but neither positive nor negative definite.
The form fa,b,c is...

degenerate if D = 0 or a square
positive or negative definite if D < 0
indefinite if D > 0,nonsquare

There is a separate reduction theory for positive (or negative) definite
and indefinite forms. For positive definite forms, the traditional theory
is pleasingly simple: there is exactly one so-called reduced form in each
equivalence class. For GL2(Z)-equivalence, the condition of reduction is

0 ≤ b ≤ a ≤ c.

For SL2(Z)-equivalence (a finer notion), the condition of reduction is

0 ≤ |b| ≤ a ≤ c.

The extra freedom of GL2 lets you change the sign of b (by taking x, y 7→
x,−y).

Warning. In what follows Bhargava will change the action and hence
equivalence classes slightly. See Section 3.3.

For indefinite forms, there are finitely many reduced forms in each equiv-
alence class, and the notion of SL2-reduced is that

|
√
D − 2|c|| < b <

√
D.
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2.2 Composition of forms

The term composition of forms refers to a group law we can impose on Q(D)
via a correspondence with ideal classes. This allows one to do a simple finite
calculation (counting reduced forms) to determine the class number of a
quadratic field.

Most sources cover the positive definite case, but a reference for both is
Henri Cohen, A Course in Compuational Algebraic Number Theory, §5.2.
Bhargava changes conventions somewhat in order to unify the positive and
negative discriminants.

Theorem 1 (Positive definite case). There is a bijective correspondence
between ideal classes in the ring of integers of the quadratic field K of dis-
criminant D < 0, and primitive integral positive definite binary quadratic
forms of discriminant D modulo SL2(Z)-equivalence.

For the indefinite case, we need the narrow class group, which is tradi-
tionally defined to be the invertible fractional ideals modulo totally positive
principal fractional ideals. The term totally positive means the generator is
positive under all embeddings to R.

Theorem 2 (Indefinite case). There is a bijective correspondence between
narrow ideal classes in the ring of integers of the quadratic field K of dis-
criminant D > 0, and primitive integral indefinite binary quadratic forms
of discriminant D modulo SL2(Z)-equivalence.

This correspondence is very concrete to describe. Let K = Q(
√
D) and

let I be an ideal of OK . The ideal I is a rank two Z-module, and the norm
N = NK/Q on OK restricts to I. The map

fI : I → Z, x 7→ N(x)/N(I)

is a quadratic form. Explicitly, choosing a basis α, β for I with the conven-
tion that

βσ(α)− ασ(β)√
D

> 0,

where σ is the non-trivial automorphism of S, we can write a quadratic form
aX2 + bXY + cY 2 such that

fa,b,c : Z2 → Z

is given by

fa,b,c(x, y) = fI(xα+ yβ) = N(xα+ yβ)/N(I).
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Example 1. Let I = (2, 1+
√
−5) be an ideal of Z[

√
−5] which has discrim-

inant −20. The allowable basis is α = 2, β = 1−
√
−5 since

2 + 2
√
−5− 2 + 2

√
−5 = 4

√
−5.

The ideal has norm N(I) = 2. Then the form is

1

2
N(2x+(1+

√
−5)y) =

1

2
(2x+y+

√
−5y)(2x+y−

√
−5y) = 2x2+2xy+3y2.

Note that if we’d taken the conjugate ideal, the necessity of choosing an
allowable basis means we would end up with x and y swapped.

Conversely, given a primitive integral binary quadratic form, we can
create an ideal:

aX2 + bXY + cY 2 7→

(
a,
b−
√
D

2

)
α,

where we choose α to be anything with sign(N(α)) = sign(a) (this condition
holds for all α when D < 0 and we are in the positive definite case, so it is
only required for the D > 0). To provide some context to the formula, note
that the roots of

aX2 + bX + c

are
b±
√
D

2a
.

At least for positive definite forms1, another way to give the correspondence
in this direction is to specify a representative of the fractional ideal class by

Z + ηZ

where η is an (appropriately chosen) root of aX2 + bX + c.

Example 2. Consider the form 2x2 + 2xy + 3y2 which has D = −20. One
obtains the ideal (

2,
2−
√
−20

2

)
= (2, 1−

√
−5).

Since
√
−5 has class number 2, this is equivalent to (2, 1 +

√
−5).

To verify the theorem, there are a variety of things to check, but none of
them are other than straightforward. We should verify that these descrip-
tions of the map in either direction are well defined (especially on equivalence
classes), and that they are inverse to one another.

1Does this work for indefinite?
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3 Composition of Quadratic Forms - Bhargava’s
Perspective

3.1 Quadratic Rings and Discriminants

A quadratic ring is a commutative ring with unit R having Z2 as its additive
group. More generally, Zn gives an n-ic ring. We have a trace and norm

Tr : R→ Z, N : R→ Z

which are just the trace and determinant of the ring endomorphism x 7→ αx
for an element α ∈ R. There’s a trace pairing, 〈α, β〉 := Tr(αβ) and the
determinant of its Gram matrix is the discriminant. This is always 0 or 1
(mod 4) (Stickelberger).

Given a candidate D for the discriminant, we may find a quadratic ring
with that discriminant, by writing

S(D) = Z[τ ]/(τ2 − f(τ))

where

f(τ) =

{
D/4 D ≡ 0 (mod 4)
(D − 1)/4 + τ D ≡ 1 (mod 4)

Then one computes that (Bhargava, (13)):

S(D) =


Z[x]/(x2) D = 0
Z× Z D 6= 0 is a square

Z[(D +
√
D)/2] otherwise

This is unique up to isomorphism. But the isomorphism is not canonical;
the quadratic ring has a nontrivial automorphism. The remedy is define
an oriented quadratic ring, which has one extra piece of data. Then we will
obtain a bijection between discriminants and isomorphism classes of oriented
quadratic rings, i.e.

Theorem 3 (Bhargava, Theorem 8). There is a one-to-one correspondence
between the set of discriminants (i.e. integers congruent to 0 or 1 modulo
4) and the set of isomorphism classes of oriented quadratic rings, by the
association

D ↔ S(D)

where D is the discriminant of S(D).

5



The reason we work with oriented quadratic rings is that then the objects
in the equivalence class don’t have automorphisms, so that given two such
objects, there is a unique (hence canonical) isomorphism between them.
This allows us to define multiplication of ideals without any ambiguity: if
you have an ideal of one ring, you can canonically identify it as an ideal
of another, and hence multiply by some ideal in that other ring. In other
words, one needs to choose a square root in order to tell which of the two
ideals (1 +

√
D) or (1−

√
D) you are talking about.

From now on, we write K = Q⊗ S.

3.2 Orientation of quadratic rings and bases

There’s an isomorphism π : S/Z → Z for each oriented quadratic ring, and
this map changes (by the automorphism 1 7→ −1 of Z) when you change the
orientation of your ring. Let σ be the non-trivial automorphism of S. Then
define

π(x) = Tr(x/
√
D) =

x− σ(x)√
D

.

which has kernel Z. One is only able to define this by choosing
√
D to denote

one of the two possible candidates in S. If we choose the other candidate,
we alter this map by a sign. This also gives a notion of oriented basis for
any rank two K-submodule of K. The basis (1, τ) of K is positively oriented
if π(τ) > 0. Other bases are oriented according to their relation to (1, τ):
these two have the same orientation if and only if the change of basis matrix
has determinant +1.

Note, for later, that with our choice of τ ,

π(a+ bτ) = b.

3.3 Forms and Bhargava’s GL2 and SL2 actions

Bhargava uses the notation (Symk Zn)∗ for n-ary k-ic forms with coefficients
in Z. In particular, he will study binary quadratic forms as (Sym2 Z2)∗. He
makes a remark about the use of ∗; Jonathan and I can’t figure out how this
corresponds to anything standard.

For the moment assume D < 0. Bhargava considers all negative and pos-
itive definite forms of a given discriminant together. This inflates the num-
ber of equivalence classes by a factor of two with respect to SL2-equivalence
(since a positive definite form cannot be changed to a negative definite form
and vice versa).
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For GL2-equivalence (for all D), he will change the action so that one
also multiplies by the determinant of the matrix. So, for example, the map
X 7→ −X, Y 7→ −Y takes the form aX2+bXY +cY 2 to −aX2−bXY −cY 2.
Therefore, by considering GL2-equivalence in this fashion for D < 0, he
recovers the usual number of SL2-equivalence classes of positive definite
forms.

Bhargava writes Cl((Sym2 Z2)∗;D) for the SL2-equivalence classes of
forms of discriminant D. It is important to remember that for D < 0,
this is twice the size one classically would mean by SL2-equivalence classes.

3.4 Oriented ideals and the narrow class group

Definition 1. An oriented ideal of S is a pair (I, ε) where I is a fractional
ideal of S of rank two as Z-module, and ε ∈ {±1}. Its orientation is ε.
Two oriented ideals (I, ε) and (I ′, ε′) are equivalent if I = κI ′ and ε =
sign(N(κ))ε′ for some κ ∈ K∗.

Oriented ideals have a norm, defined as |L/I| · |L/S|−1ε(I), where L is
any lattice in K containing S and I.

The narrow class group Cl+(S) is defined as the set of invertible oriented
ideals of S, with componentwise multiplication, modulo equivalence. It is
most interesting for D > 0 where N(κ) may be positive or negative. In the
case of a quadratic imaginary field, (I, ε) and (I,−ε) are never equivalent,
so that Cl+(S) ' Z/2Z× Cl(S).

In the negative discriminant case, this is non-standard. But it lets us
unify the two statements of the form-ideal correspondence.

3.5 Composition of forms

Now we can state the correspondence between forms and class groups in
Bhargava’s language. The first theorem is most general and includes, for
example, non-invertible ideals and non-irreducible quadratic forms.

Theorem 4 (Bhargava I, Theorem 9). There is a canonical bijection between
the set of nondegenerate SL2(Z)-orbits on the space (Sym2 Z2)∗ of integer-
valued binary quadratic forms, and the set of isomorphism classes of pairs
(S, I) where S is a non-degenerate oriented quadratic ring (i.e. non-zero
discriminant) and I is a (not necessarily invertible) oriented ideal class of
S. Under this bijection, the discriminant of a binary quadratic form equals
the discriminant of the corresponding quadratic ring.

In particular, if we restrict to the case we described classically, we have
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Theorem 5 (Bhargava 1, Theorem 10). The above bijection restricts to a
correspondence

Cl((Sym2 Z2)∗;D)↔ Cl+(S(D)),

which is an isomorphism of groups.

He points out that if you want to use GL2 equivalence (as modified by
him), then you recover the regular class group.

4 Bhargava’s cubical perspective on the group law

4.1 Overview

Bhargava’s cubes (really, elements of Z2 ⊗ Z2 ⊗ Z2) are meant to represent
instances of the group law. From each cube, one can extract three quadratic
forms whose classes sum to zero. If one has three such classes, one can
construct a Bhargava cube. In the end, he demonstrates this by finding an
explicit bijection between cubes and triples of ‘balanced ideals.’ But the
cubes in some sense give the definition of the group law on quadratic forms
by ‘bare hands,’ instead of by transfer of structure. First we’ll examine that
perspective, before addressing the correspondence with ideals that provides
a proof.

4.2 The Cubes

Bhargava represents elements of Z2 ⊗ Z2 ⊗ Z2 as cubes of eight integers:

e

��������
f

��������

a b

g

��������
h

�������

c d

meaning (where v1, v2 is the standard basis of Z2),

av1 ⊗ v1 ⊗ v1 + bv1 ⊗ v2 ⊗ v1 + cv2 ⊗ v1 ⊗ v1 + dv2 ⊗ v2 ⊗ v1

+ev1 ⊗ v1 ⊗ v3 + fv1 ⊗ v2 ⊗ v2 + gv2 ⊗ v1 ⊗ v2 + hv2 ⊗ v2 ⊗ v2.
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We can slice the cube into two slices of bread in three possible ways:

M1 =

(
a b
c d

)
, N1 =

(
e f
g h

)
or

M2 =

(
a c
e g

)
, N2 =

(
b f
d h

)
or

M3 =

(
a e
b f

)
, N3 =

(
c g
d h

)
.

He defines an action on such cubes by SL2(Z)× SL2(Z)× SL2(Z). A matrix(
r s
t u

)
in the ith factor of SL2(Z) acts on the cube by replacing the bread

slices Mi, Ni with rMi + sNi and tMi + uNi. (That is, instead of row
operations and column operations, we have bread slice operations.)

4.3 Interpreting cubes as triples of quadratic forms

Define
Qi(x, y) = −det(xMi − yNi).

Qi is transformed to its SL2-equivalent forms by the action of the i-th factor
of SL2. It is invariant under the SL2 action by the other two factors of SL2.
One finds that the discriminant of all three forms are equal and preserved
under the SL2×SL2×SL2 action.

Let’s call any cube for which the three resultant forms are primitive a
projective cube.

4.4 The composition of quadratic forms

Now we do the composition of quadratic forms by bare hands2: Three equiv-
alence classes of forms add to the trivial class if and only if they correspond
to the three perspectives on some cube of eight integers. In other words, take
the free abelian group on primitive integral binary quadratic forms of a fixed
discriminant D and take the quotient by all sums

Q1 +Q2 +Q3

arising from any projective cube. We automatically identify forms with their
equivalent forms, since for any equivalent forms Q1 and Q′1, there exist cubes

2Gauss and Dirchlet etc. did this too, and the cube approach is not without precedent
in their formulae, even if they didn’t draw cubes. See Lemmermeyer’s notes.
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with Q2 = Q′2 and Q3 = Q′3. This law doesn’t directly identify any forms
with the identity. For example, consider a group of order 3, say Z/3Z. The
group laws of the form x+ y + z = id are exactly

0 + 1 + 2 = id, 0 + 0 + 0 = id, 1 + 1 + 1 = id, 2 + 2 + 2 = id

There’s nothing to break the symmetry here3

However, we can choose as an identity any form Qid which appears from
all three perspectives on some cube. Taking the quotient by Qid, we obtain
a group. Bhargava shows that this gives a group law on equivalence classes
(classes don’t get identified further).

Bhargava demonstrates some such identity cubes which give exactly
Gauss’ version of composition.

The above group (with his choice of identity) is exactly Cl((Sym2 Z2)∗;D).
In particular, this is made up only of classes of primitive forms. It will be
proven by setting up a correspondence between cubes (not just projective4

ones) with certain data on quadratic rings.

5 Cubes and triples of balanced ideals

Let S = S(D) and write K = Q⊗Z S, i.e. S is a quadratic ring and K is its
quadratic algebra (e.g. ring of integers and field of fractions). The way to
the proof is through a correspondence between cubes and triples of so-called
‘balanced’ ideals (a proxy for ideals that sum to zero; in fact, it is just ideals
that sum to zero in the ring of integers case, plus a consistency condition on
which representatives we choose simultaneously).

5.1 Balanced ideals

Definition 2 (Bhargava, §3.3). A triple (I1, I2, I3) of oriented ideals of S
is balanced if I1I2I3 ⊂ S and N(I1)N(I2)N(I3) = 1. Two such triples
(I1, I2, I3) and (I ′1, I

′
2, I
′
3) are equivalent if Ii = κiI

′
i for some κi ∈ K. (Note

that then N(κ1κ2κ3) = 1.)

In the case of ideals in a quadratic ring of integers, balance is equivalent
to their product being trivial in the narrow class group and the representa-
tives of the classes being chosen so that their norms multiply to 1. Remember
that the norm involves the orientation.

3The same happens with elliptic curves: until you pick a point to serve as identity, you
don’t yet have a group.

4meaning all three of the associated forms are primitive
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5.2 The main theorem

Write Γ = SL2(Z)× SL2(Z)× SL2(Z).

Theorem 6 (Bhargava, Theorem 11). There is a canonical bijection between
the set of nondegenerate Γ-orbits on the space Z2⊗Z2⊗Z2 of cubes, and the
set of isomorphism classes of pairs (S, (I1, I2, I3)), where S is a nondegener-
ate oriented quadratic ring and (I1, I2, I3) is an equivalence class of balanced
triples of oriented ideals of S. Under this bijection, the discriminant of an
integer cube equals the discriminant of the corresponding quadratic ring.

We’ll now outline the proof. The correspondence is constructed explic-
itly.

5.3 Making a cube from balanced ideals

Let S = Z+τZ as before. Choose integral bases (α1, α2), (β1, β2) and (γ1, γ2)
for each of the ideals. The orientation of the basis is chosen to match the
orientation of the ideals. We form a cube by writing (Bhargava, (15))

αiβjγk = cijk + aijkτ

and then aijk forms the cube! Another way to say this is that a cube
corresponds to a trilinear mapping

I1 × I2 × I3 → Z, (x, y, z) 7→ π(xyz).

The cube is formed of the images under this map of the various tuples of
basis elements, and therefore these 8 values determine the map by linearity.

The action of Γ on cubes corresponds exactly with the action of Γ on
the bases of the three ideals.

Bhargava says equivalence on triples leaves the cube unchanged. This
doesn’t make a lot of sense to me, though, since the cube can change even if
the triple of ideals doesn’t, by picking a new basis. He probably means up
to equivalence. But what if κ1 = i, and κ2 = κ3 = 1 in Z[i]. This swaps real
and imaginary parts. How is it obvious the result is an equivalent cube?

5.4 Recovering the balanced ideals from their cube

Bhargava has already explained how to recover the ideals: take the quadratic
forms obtained from each of the three perspectives. (Of course, I’m conflat-
ing forms with ideals already; in his paper he reproves Gauss composition
as a consequence of his cubes and balanced ideals correspondence.) We’ll
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now show that this recovers the same ideals you put into your cube in the
last section. This argument is not in Bhargava.

Consider the bilinear pairing

OK ×OK → Z, (a, b) 7→ π(ab).

The Gram matrix of this pairing has determinant −1, with respect to an
integral basis of OK . This pairing is very natural: it is the pairing

OK ×OK →
2∧
OK , (a, b) 7→ a ∧ b

This is because
∧2OK and OK/Z are isomorphic via a ∧ b 7→ π(ab) and

x 7→ x ∧ 1.
This pairing restricts to any pair of ideals I1 = Zα1+Zα2 and I2 = Zβ1+

Zβ2, where we are choosing a basis oriented according to the orientation of
the ideals. The resulting Gram matrix

(π(αiβj))i,j .

has determinant −N(I1)N(I2) (here, norm is the norm of oriented ideals).
Let γ ∈ OK . Then the matrix

(π(γαiβj))i,j .

is exactly the pairing’s Gram matrix when applied to γI1 × I2. Since I is
taken to γI by a linear transformation of determinant N(γ), this matrix has
determinant

−N(γ)N(I1)N(I2).

The conclusion is this. Suppose we form a cube from balanced ideals
I1, I2, I3. If we write our third ideal K = Zγ1 + Zγ2, then the matrix

X (π(γ1αiβj))i,j − Y (π(γ2αiβj))i,j

is exactly the pairing matrix for (Xγ1 − Y γ2)I1 × I2. It has determinant

−N(Xγ1 − Y γ2)N(I1)N(I2) = −N(Xγ1 − Y γ2)/N(I3)

which is exactly the negative of the quadratic form for the ideal I3. But
this determinant is also the quadratic form Q3 from the cube, by definition.
Similarly, the oriented ideals I1 and I2 correspond to the forms Q1 and Q2.

In other words, if we form a cube from balanced ideals I1, I2 and I3, then
the quadratic forms Q1, Q2 and Q3 defined from the cube recover the ideals.
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5.5 All cubes give balanced ideals

From a given cube we can extract three quadratic forms. I propose to
show that these are balanced. First, I will show that their product J is an
integral ideal. From the cube, which has integer entries, and the fact that
the products of the generators of the Ii span J over Z, we see that π(J) ⊂ Z.
I claim that this is a necessary and sufficient condition for an ideal to be
integral. If it is integral, this is immediate. If π(J) ⊂ Z, but we have some
a+ bτ /∈ S, then it must be the case that a /∈ Z and b = π(a+ bτ) ∈ Z. But
then aτ ∈ J has π(aτ) /∈ Z.

The idea is to extend scalars to the quadratic algebra K = Q⊗S. When
these are extended, the cube can be diagonalized, meaning, by an action of
SL2(K)× SL2(K)× SL2(K), we can put it in the form

0

�������
0

�������

1 0

0

�������
1

�������

0 0

corresponding to the three forms XY , XY , XY . Explicitly, find the two
roots ei, e

′
i of Qi. By assumption, that K-linear combination of the gener-

ators α1, α2 of I1 has zero norm (here we are taking the norm on K ⊗ S,
meaning N(x ⊗ y) = x2 ⊗ yσ(y)), i.e. N(ei ⊗ α1 + e′i ⊗ α2) = 0. A com-
putation reveals that ei = α2, e

′
i = −α1, both in K. Therefore, under a

suitable change of basis defined over K, the form becomes XY . Do this
with each form Qi, and then apply the appropriate changes of basis in the
corresponding factors of SL2×SL2×SL2. The result is the cube above (this
is a straightforward computation).

Write x = α2 ⊗ α1 − α1 ⊗ α2, which is an element of norm zero. In fact,
it is what I’ll call ‘left-zero’. In other words, under the isomorphism

K ⊗K ' K ×K, a⊗ b 7→ (ab, aσ(b)),

the left coordinate is zero. This implies the norm is zero.
It is a computation to verify that π(x) = −N(I1). Similarly, define y and

z for the other two ideals, and find that π(y) = −N(I2) and π(z) = −N(I3).
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In fact (although π is not in general multiplicative), one can compute that
it is multiplicative on elements that are left-zero. Therefore,

1 = π(xyz) = −N(I1)N(I2)N(I3)

from which we conclude that the ideals are balanced! Except for a sign?
This would need to be extended to the non ring-of-integers case, but with

that accomplished, this provides a new proof of Bhargava’s main bijection
that is much less computational.

5.6 Cubes have a group law

Balanced triples come with a group law (coordinatewise). We restrict to
projective modules. The resulting group is isomorphic to

Cl+(S)× Cl+(S)

by (I1, I2, I3) 7→ (I1, I2). The correspondence of Bhargava’s theorem then
gives us a group law on cubes.

Theorem 7 (Bhargava, Theorem 12).

Cl(Z2 ⊗ Z2 ⊗ Z2;D) ' Cl+(S(D))× Cl+(S(D)).

Bhargava uses these theorems to recover the usual correspondence be-
tween forms and ideals in the classical case.

6 Binary cubic forms

A binary cubic form px3 + 3qx2y+ 3rxy2 + sy3 can be associated to a cube

q

�������
r

��������

p q

r

�������
s

��������

q r

The association is that a cubic form is the diagonal of a trilinear form in
much the same way a quadratic form is the diagonal of a bilinear form. In
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other words, starting by viewing a symmetric cube as a symmetric trilinear
form

φ : Z2 × Z2 × Z2 → Z

we get a new cubic form:
φ : Z2 → Z

by
φ(x) = φ(x, x, x).

Symmetry isn’t required for this construction, but if we require symmetry
then this construction has an inverse, given explicitly by

φ(x, y, z) =
1

6

(
φ(x+ y + z)− φ(x+ y)− φ(y + z)− φ(z + x) + φ(x) + φ(y) + φ(z)

)
.

For φ to have integer coefficients, the interior coefficients of the cubic form
must be divisible by 3. The fact that k-ic quadratic forms are in bijection
with symmetric k-linear forms (at least over a field) is called polarization.
At any rate, this inverse is an inclusion from binary cubic forms given in the
form above (with interior coefficients divisible by 3), into cubes:

Sym3 Z2 → Z2 ⊗ Z2 ⊗ Z2

A cubic form is projective if its cube is so.
Note a footnote5.

Theorem 8 (Bhargava, Theorem 13). SL2 orbits of Sym3 Z2 are in bijec-
tion with equivalence classes of (S, I, δ) where S is a nondegenerate oriented
quadratic ring, I is an ideal of S, and δ is an invertible element of S ⊗ Q
such that I3 ⊆ δ · S and N(I)3 = N(δ). The discriminant of the cubic form
class is the discriminant of S.

Equivalence: (S, I, δ) ∼ (φ(S), κφ(I), κ3φ(δ)) where φ is an isomorphism
of oriented quadratic rings and κ ∈ Q⊗ φ(S).

As a result, we have the following, concerning the 3-part Cl3 of the class
group:

5Bhargava writes Sym3 Z2 for cubic binary forms, but as far as I can tell (in consultation
with Jonathan), this ought to be Sym3((Z2)∗). Then symmetric trilinear forms would be
(Sym3(Z2))∗, which is isomorphic, almost (it depends whether you require the interior
coefficients of the form to be divisible by 3). Bhargava seems to have this backwards from
what I’m suggesting here, and I don’t understand why.
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Theorem 9 (Bhargava, Corollary 14). There’s a surjective group homo-
morphism

Cl(Sym3 Z2;D)→ Cl3(S(D))

Namely, the form goes to the module I in the corresponding triple (S(D), I, δ).
The kernel has cardinality |U/U3| where U is the unit group of S(D).

This recovers a classical number theory fact if we are in the case of a
ring of integers (Bhargava, Corollary 15).

6.1 The explicit bijection

Suppose η3 = δ. If one takes

I1, I2, I3 =
1

η
(αZ + βZ),

then one obtains this bijection from the bijection of cubes with balanced
ideals. The problem is that δ needn’t be a cube, but this can be dealt with.
The cubic form then is the map

C : I → Z, ζ 7→ π(ζ3).

This doesn’t appear to have a δ in it, but recall that I3 ⊂ δS and N(I)3 =
N(δ) (in other words, we don’t have free choice on δ once I is determined).

7 Pairs of binary quadratic forms

We write Z2⊗Sym2 Z2 for pairs of binary quadratic forms. Here we require
the middle coefficient to be even, i.e. these are really symmetric bilinear
forms over Z.

Theorem 10 (Bhargava, Theorem 16). There is a canonical bijection be-
tween the set of nondegenerate SL2(Z) × SL2(Z) orbits on Z2 ⊗ Sym2 Z2,
and the set of isomorphism classes of balanced triples (S, (I1, I2, I3)) where
I2 = I3. Discriminants correspond.

Taking I2 = I3 imposes a symmetry on the cube:

16
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In other words, slicing in the correct of the three dimensions, one obtains
two symmetric matrices: these are the two symmetric bilinear forms giving
the quadratic forms. The identity pair for D ≡ 0 (mod 4) is

2xy, x2 +
D

4
y2.

The equivalence classes of projective cubes with this symmetry form a group

Cl+(Z2 ⊗ Sym2 Z;D)

There’s an isomorphism

Cl+(Z2 ⊗ Sym2 Z;D)→ Cl+((Sym2 Z2)∗;D).

This is obtained by taking the cube to one of the associated quadratic forms.
In fact, a cube with this sort of symmetry will have Q2 = Q3, so we take it
to Q2 = Q3 (instead of Q1)

6.

8 Pairs of quaternary alternating 2-forms

8.1 How a cube is a pair of alternating forms

Closely following Bhargava, section 2.6.
A quaternary alternating 2-form is an alternating form in four variables,

meaning elements of ∧2Z4, or maps

B : Z4 × Z4 → Z
6Think about this in the case where balanced really means product equal to (1): then

Q1 is always associated to a square ideal, so you wouldn’t get the whole class group.
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having the property that B is linear in each coordinate and

B(u, u) = 0, equivalently, B(u, v) = −B(v, u)

(alternating is the same as skew-symmetric when characteristic is not 2).
Hence an alternating 2-form is given by a matrix with skew-symmetry (AT =
−A). Here’s a way to see a cube as a pair of quaternary alternating 2-forms
(Bhargava, equation (10)):

e

��������
f

��������

a b

g

��������
h

�������

c d

→




0 0 a b
0 0 c d
−a −c 0 0
−b −d 0 0

 ,


0 0 e f
0 0 g h
−e −g 0 0
−f −h 0 0


 .

It is apparent that one may not realize all possible pairs of forms this way
(since the forms in the equation always have 8 zero entries, for example).
However, Bhargava assures us that every pair of forms is equivalent to a
pair in this shape.

Here’s how the cube gives a form in a more algebraic way. View a cube
as a trilinear map, as before:

φ : L1 × L2 × L3 → Z

where Li are rank 2 Z-modules. We build from this a different Z-trilinear
map:

φ : L1 × (L2 ⊕ L3)× (L2 ⊕ L3)→ Z

according to the formula

φ(r, (s, t), (u, v)) = φ(r, s, v)− φ(r, u, t).

This is skew-symmetric in the second and third variables. This map φ→ φ
is actually a map

id⊗ ∧2,2 : Z2 ⊗ Z2 ⊗ Z2 → Z2 ⊗ ∧2(Z2 ⊕ Z2) = Z2 ⊗ ∧2Z4,

taking cubes to pairs of alternating forms.
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8.2 Actions on cubes and pairs of forms

Two pairs of forms, i.e. elements of Z2 ⊗∧2Z4, are equivalent if they are in
the same Γ′ = SL2(Z)× SL4(Z) orbit, i.e. change of variables on the forms
themselves, together with replacement by unimodular linear combinations
of the forms (i.e. we are really considering the span of the two forms; change
of basis in this space).

With Γ as before acting on cubes, the action will take a pair of forms
to an equivalent pair. Bhargava shows that the map from cubes to forms is
surjective onto the Γ′ orbits. We call the image of a projective cube, and all
its equivalent pairs, projective.

8.3 Discriminants

The space Z2⊗∧2Z4 has a unique polynomial invariant for the action of Γ′,
called the discriminant. Specifically, it is

Disc(Pfaff(Mx−Ny))

where (M,N) is the pair of alternating matrices7.
This discriminant is the same as that of the cube the pair came from.
Denote the collection of projective pairs of discriminant D by Cl(Z2 ⊗

∧2Z4;D).

8.4 The main bijection

Theorem 11 (Bhargava, Theorem 17). There is a canonical bijection be-
tween the set of nondegernate Γ′ orbits on Z2 ⊗ ∧2Z4 and the set of iso-
morphism classes of pairs (S, (I,M)) where S is a nondegenerate oriented
quadratic ring, (I,M) is an equivalence class of balanced pairs of oriented
ideals of S having ranks 1 and 2 respectively. Discriminants correspond.

Some clarification on terminology is in order here. A rank n ideal of S
is a rank 2n Z-module contained as an S-submodule in Kn. Equivalence
is isomorphism as S-modules (the isomorphisms are elements of GLn(K)).
These can also be oriented.

The notion of balanced (ranks can be mixed, i.e. Mi has rank ni etc.) is:

Det(M1) · · ·Det(Mk) ⊂ S, N(M1) · · ·N(Mk) = 1

7The Pfaffian is the square root of the determinant, where sign is chosen so that(
0 I
−I 0

)
has positive Pfaffian
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This requires explaining Norm and Det, which we will do in a moment.
Equivalence of balanced k-tuples is as before – elements λi of GLni(K) taking
Mi to M ′i . This entails that the determinants of the λi have a product of
norm 1.

Norm is |L/M | · |L/S|−1ε(M) where ε is the orientation, and L is any
lattice of Kn containing Sn and M . (Bhargava gives this definition for
ideals, i.e. rank one ideals; it is equivalent to what you think, but lets you
define things for fractional ideals without passing to integral ideals.)

The map Det takes ideals of rank n to ideals of rank 1. If M has rank
n, then for every n-tuple (x1, . . . , xn) ∈Mn, we can write det(x1, . . . , xn) in
terms of usual map

det : (Kn)n → K.

The ideal Det is the ideal generated by all det(x1, . . . , xn).
We obtain an isomorphism of groups

Theorem 12 (Bhargava, Theorem 6).

Cl(Z2 ⊗ ∧2Z4;D)→ Cl((Sym4 Z2)∗;D)

8.5 The correspondence

The map
id⊗ ∧2,2 : Z2 ⊗ Z2 ⊗ Z2 → Z2 ⊗ ∧2Z4

corresponds through the correspondence of Bhargava’s Theorem 17 with

(S, (I1, I2, I3)) 7→ (S, (I1, I2 ⊕ I3)).

The isomorphism of groups comes from the map

(S, (I,M)) 7→ (S, I)

on the side of ideals8. On the side of forms, it is

(M,N) 7→ −Pfaff(Nx−My).

8Bhargava uses a cancellation theorem of Serre to show that (S, (I,M)) is always of
the form (S, (I, S ⊕ I−1)).
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9 Senary alternating 3-forms

In other words, alternating AKA skew-symmetric trinary forms in six vari-
ables. Again, we take a trilinear map

φ : L1 × L2 × L3 → Z,

and construct a new trilinear map

φ : (L1 ⊕ L2 ⊕ L3)
3 → Z

according to the formula

φ((r1, r2, r3), (s1, s2, s3), (t1, t2, t3)) = Detφ(r, s, t) :=
∑
σ∈S3

(−1)σφ(rσ(1), sσ(2), tσ(3)).

This map φ 7→ φ corresponds to

∧2,2,2 : Z2 ⊗ Z2 ⊗ Z2 → ∧3(Z2 ⊕ Z2 ⊕ Z2) = ∧3Z6.

The action on the latter is SL6(Z) and as in the last case, ∧2,2,2 is surjective
on equivalence classes. Again, one unique polynomial invariant called the
discriminant (same as that of cube under this map). Again, projective
means coming from a projective cube.

We get
Cl(∧3Z6;D)

but it turns out to be always trivial! For fundamental discriminants, all
forms are projective so there’s only one form up to SL6(Z)-equivalence.

Theorem 13 (Bhargava, Theorem 18). There is a canonical bijection be-
tween the set of nondegenerate SL6(Z)-orbits on the space ∧3Z6 and the set
of isomorphism classes of pairs (S,M) where S is a nondegenerate oriented
quadratic ring and M is an equivalence class of balanced ideals of S having
rank 3. Discriminants correspond.

Under the correspondence, turning a cube into a form corresponds to

(S, (I1, I2, I3)) 7→ (S, I1 ⊕ I2 ⊕ I3).

Bhargava calls this ‘fusing’ the three rank 1 ideals into a rank 3 ideal.
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