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Abstract
We will discuss the spin homomorphism SL2(C) → SO1,3(R) in

three manners. Firstly we interpret SL2(C) as acting on the Minkowski
spacetime R1,3; secondly by viewing the quadratic form as a twisted
P1 × P1; and finally using Clifford groups.

1.1 Introduction

The spin homomorphism

SL2(C)→ SO1,3(R)

is a homomorphism of classical matrix Lie groups. The lefthand group con-
sists of 2 × 2 complex matrices with determinant 1. The righthand group
consists of 4× 4 real matrices with determinant 1 which preserve some fixed
real quadratic form Q of signature (1, 3). This map is alternately called the
spinor map and variations. The image of this map is the identity component
of SO1,3(R), denoted SO+

1,3(R). The kernel is {±I}. Therefore, we obtain an
isomorphism

PSL2(C) = SL2(C)/± I ' SO+
1,3(R).

This is one of a family of isomorphisms of Lie groups called exceptional iso-
morphisms. In Section 1.3, we give the spin homomorphism explicitly, al-
though these formulae are unenlightening by themselves. In Section 1.4 we
describe O1,3(R) in greater detail as the group of Lorentz transformations.

This document describes this homomorphism from three distinct per-
spectives. The first is very concrete, and constructs, using the language of
Minkowski space, Lorentz transformations and Hermitian matrices, an ex-
plicit action of SL2(C) on R4 preserving Q (Section 1.5). The second is
geometric, and describes the zero locus of Q as a twisted form of P1 × P1;
it then inherits an action from P1 × P1 (Section 1.6). The third is the most
general and develops the basic theory of Clifford algebras and Clifford groups
in order to define the Spin group, before specializing to our case, in which
SL2(C) ' Spin1,3(R) (Sections 1.7 to 1.9). This last perspective is the most
challenging, but it also leads to other exceptional isomorphisms in Lie theory
(which is beyond the scope of this note).
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1.2 Preliminaries and Notational conventions

When a matrix Lie group appears in what follows, we will indicate the field
over which we are considering its points, e.g. SL2(R) vs. SL2(C). The ex-
ception is the common convention that for the orthogonal group (or special
orthogonal group) associated to a quadratic form Q of signature (p, q) on real
vector space we sometimes write O(p, q) instead of Op,q(R).

All the quadratic forms we consider are non-degenerate.

1.3 Explicit homomorphism

Fix the quadratic form

Q(t, x, y, z) = t2 − x2 − y2 − z2,

which has signature (1, 3) (see Section 1.4 for the definition of signature).
Consider O1,3(R) to be 4× 4 real matrices which preserve the form Q. Then
the spin homomorphism, given explicitly, is:(

a b
c d

)
7→

1

2

 aa+ bb+ cc+ dd ab+ ab+ cd+ cd i(ab− ab+ cd− cd) aa− bb+ cc− dd
ac+ ac+ bd+ bd ad+ ad+ bc+ bc i(ad− ad+ bc− cb) ac+ ac− bd− bd
i(ac− ac+ bd− bd) i(ad− ad+ bc− bc) ad+ ad− bc− cb i(ac− ac− bd+ bd)

aa+ bb− cc− dd ab+ ab− cd− cd i(ab− ab+ cd− cd) aa− bb− cc+ dd

. (1)

1.4 Lorentz group

1.4.1 The orthogonal group O(p, q)

Let E be a vector space of dimension n, over R. By GL(E) we mean the
general linear group on E, i.e. the group of invertible linear transformations.
Specifying a quadratic form Q on E is equivalent to specifying a symmetric
bilinear form B on E. Since we work over R, such a choice is determined
up to a change of basis by the signature (p, q), as follows. Fixing a basis, we
can represent B by a matrix G, i.e. B(u, v) = uTGv. It is always possible to
choose a basis so that G is diagonal with ±1’s on the diagonal; the number
p of 1’s and q of −1’s is an invariant of the form and is called the signature.

Fix such a choice of signature (p, q), where p and q are positive integers
such that p+ q = n (so Q and B are nondegenerate). The orthogonal group
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O(p, q) is the subgroup of GL(E) consisting of all linear transformations
preserving Q, or, equivalently, preserving B.

If a basis for E is chosen under which the matrix representation of B is
G, then GL(E) and O(p, q) can be given as matrix groups:

GL(E) = {A ∈ Matn×n(E) : det(A) 6= 0},

O(p, q) = {A ∈ GL(E) : ATGA = G}.

One sees that O(p, q) is determined up to isomorphism by the signature (p, q)
alone, justifying the notation. Furthermore, interchanging p and q replaces
B with its negative, so that O(p, q) ∼= O(q, p).

When p or q is zero, we recover the usual orthogonal group O(n). When
p and q are both strictly positive, O(p, q) is called an indefinite orthogonal
group.

1.4.2 The Lorentz group

A nice book on Minkowski spacetime and Lorentz group is [Nar].
The Lorentz group O(1, 3) is one of the most important groups in physics.

The relevant four-dimensional vector space is called Minkowski spacetime and
denoted R1,3 when it is equipped with the quadratic form

Q(t, x, y, z) = t2 − x2 − y2 − z2.

Here, t is the coordinate of time and (x, y, z) are the coordinates of space1. A
vector v in Minkowski spacetime is called timelike if Q(v) < 0 and spacelike
if Q(v) > 0; if Q(v) = 0, it is called null or lightlike. The null vectors
form the light cone, the ‘inside’ of which consists of two components made
up of the timelike vectors. If we specify a direction of time, we can refer to
these as the future-pointing and past-pointing timelike vectors. The elements
of O(1, 3) are called Lorentz transformations and by definition, they take
timelike vectors to timelike vectors, spacelike to spacelike, and null to null.

The Lorentz group is a real Lie group of dimension six. As Lie groups,
the indefinite orthogonal groups are smooth real manifolds. Each member
of the family has four connected components. In the case of the Lorentz
group, these four components can be characterised by which of the following
properties its elements possess (each property is constant on a component):

1This quadratic form is the metric tensor of Minkowski spacetime
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(i) The element preserves (reverses) the direction of time, in which case it
is called orthochronous (non-orthochronous)2.

(ii) The element preserves (reverses) the orientation of a basis for Minkowski
space, in which case it is called proper (improper).

The subgroup of orthochronous transforms is denoted by O+(1, 3). The
subgroup of proper Lorentz transforms is denoted by SO(1, 3) (proper ele-
ments have determinant 1). The subgroup of all Lorentz transforms pre-
serving both the direction of time and orientation is called the restricted
Lorentz group and denoted by SO+(1, 3). This is the identity component
of the Lorentz group: SO+(1, 3) = O(1, 3)◦. The component group O(1, 3)/
SO+(1, 3) is isomorphic to Z/2Z× Z/2Z, i.e., the Klein four-group.

1.5 The spin homomorphism via Hermitian matrices

1.5.1 Overview

We shall construct a surjective homomorphism of Lie groups from SL2(C)
to SO+(1, 3). We will show that this homomorphism is two-to-one. Since
SL2(C) is simply connected we deduce that SL2(C) is the double cover of
SO+(1, 3). Composing with the embedding SO+(1, 3) ↪→ SO(1, 3) we obtain
the desired spin homomorphism. For a reference on this material, see [CSM,
Lie Groups, Chapter 2] and [Rab].

1.5.2 Minkowski space as the collection of Hermitian matrices

Let W represent the collection of 2× 2 Hermitian matrices,

W = {W ∈ Mat2×2(C) : W = W †},

where W † denotes the complex conjugate transpose of W .
This can be considered an alternate form of R1,3 via the following map:

R1,3 →W, (t, x, y, z) 7→ W =

(
t+ z x− iy
x+ iy t− z

)
.

It is convenient that the quadratic form on R1,3 becomes the determinant:
detW = t2 − x2 − y2 − z2.

2In other words, a non-orthochronous transformation interchanges future-pointing and
past-pointing timelike vectors.
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The standard basis for R1,3 is now written for W in the following way:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(2)

The matrices σ1, σ2, σ3 are called the Pauli matrices. With this basis, a
point (t, x, y, z) in Minkowski spacetime corresponds to the 2 × 2 matrix
tσ0 + xσ1 + yσ2 + zσ3. If one defines an inner product by

〈M,N〉 =
1

2
Tr(MN),

then one readily checks that this basis is orthonormal:

〈σµ, σν〉 = δµν . (3)

This gives us an easy way to write down the inverse map from W to R1,3:

W 7→ (〈W,σ0〉, 〈W,σ1〉, 〈W,σ2〉, 〈W,σ3〉)

1.5.3 The spin homomorphism

Now we can let X ∈ SL2(C) act on W via

W 7→ WX = XWX†

This action preserves the determinant and hence is an action by linear isom-
etry on Minkowski spacetime, by the isomorphism of the last section. There-
fore it maps to a subgroup of the Lorentz group:

SL2(C)→ O(1, 3)

Furthermore, since SL2(C) is simply connected as a manifold (as it is a matrix
Lie group), and the homomorphism is continuous, we deduce that the image
is the full identity component of the Lorentz group.

Therefore we get the promised spin homomorphism

ψ : SL2(C)→ SO+(1, 3), X 7→ Y. (4)

Tracing back through the definitions, one finds that

Yµν = 〈σµ, XσνX†〉, µ, ν = 0, 1, 2, 3. (5)
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Example 1. Consider the element

X =

(
eiθ/2 0

0 e−iθ/2

)
of SL2(C). By the formula (5) above we see that the spin homomorphism
sends X to the restricted Lorentz transform

Y =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


Compare to (1).

1.5.4 The kernel of the spin homomorphism

The kernel of the spin homomorphism consists of the matrices X ∈ SL2(C)
such that XWX† = W for all Hermitian W . In particular taking W as the
identity matrix we have XX† = I. Thus X is unitary and the action can be
rewritten as W 7→ XWX−1. Therefore the kernel of the spin homomorphism
is

{X ∈ SL2(C) : WX = XW for all Hermitian W}.

All real diagonal matrices are contained in W. Therefore such X must be
diagonal. Finally the condition detX = 1 forces that X = ±I.

Therefore we have an isomorphism

PSL2(C) = SL2(C)/{±I} ' SO+(1, 3).

This also shows SL2(C) is a double cover of SO+(1, 3). In fact, it is the
universal cover, recalling that SL2(C) is simply connected.

1.6 A geometric perspective

1.6.1 Overview

We will describe the spin homomorphism as a composition of the natural
homomorphisms

SL2(C) ↪→ GL2(C)→ PGL2(C)
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and a homomorphism
PGL2(C)→ O1,3(R)

arising from a geometric perspective due to van der Waerden. Our exposition
follows [EGM, pp.19–20].

1.6.2 The map PGL2(C)→ O1,3(R)

Choose the quadratic form

Q(x1, x2, x3, x4) = x1x2 − x23 − x24
which is of signature (1, 3) over R, hence equivalent to the usual form giving
Minkowski space. Thus OQ(R) ' O1,3(R). We will see in what follows that
its projective zero locus is a twisted form of P1 × P1.

A change of variables

(x1, x2, x3, x4) = A(y1, y2, y3, y4) := (y1, y2, y3 + iy4, y3 − iy4)
replaces Q with a form

Q′(y1, y2, y3, y4) = y1y2 − y3y4
which is equivalent to Q over C (but not over R). In fact, the projective zero
locus of this form is isomorphic to P1 × P1 over R.

Define a map

T : C4 → C4, T (λ1, λ2, µ1, µ2) 7→ (λ1µ1, λ2µ2, λ1µ2, λ2µ1).

This map parametrizes the affine quadric Q′(y1, y2, y3, y4) = 0. Projectiviz-
ing, we have a quadric in P3, and fixing λ1/λ2 or µ1/µ2 parametrizes the
quadric as a union of projective lines; in other words, the projective quadric
is isomorphic to P1 × P1 over R, i.e.

T : P1 × P1 → {[y1, y2, y3, y4] ∈ P3 : Q′(y1, y2, y3, y4) = 0}
is an isomorphism. Since PGL2 forms the automorphism group on P1, it is
natural to define the following action by g ∈ PGL2(C) on P1(C)× P1(C):

g([λ1, λ2], [µ1, µ2]) = ([aλ1 + bλ2, cλ1 + dλ2], [aµ1 + bµ2, cµ1 + dµ2]).

Here, the complex conjugation ensures that, when tracing back through the
twist, this corresponds to an algebraic linear action on the zero locus of Q,
hence an element of OQ(R). Therefore we have defined a map

PGL2(C)→ O1,3(R).

(Notice that PGL2(C) is isomorphic to PSL2(C)).
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1.7 Clifford algebras

1.7.1 Overview

The Clifford algebra associated to a quadratic form Q on a vector space E
is the universal K-algebra such that E can be embedded by a linear map
and squaring in the image of E corresponds to the quadratic form Q. This
brings into play plenty of extra structure beyond the quadratic space E. This
section was written with the aid of [Por, Lan, EGM].

1.7.2 Tensor algebras

We state the definition in terms of a module over a commutative ring, but
we will use it for a vector space over a field.

Let M be a module over a commutative ring A. The tensor algebra T (M)
(also called a free algebra) is a graded object:

T (M) = ⊕∞r=0T
r(M)

where the gradings are:

T 0(M) = A, T r(M) = M ⊗AM ⊗AM · · · ⊗AM

where the tensor is taken r times. It is equipped with a multiplication that
respects the grading given by associativity of tensor products, for example

(x1 ⊗ x2)(x3 ⊗ x4 ⊗ x5) = (x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5).

If a ∈ T 0(M) and v ∈ T r(M), then a · v is just given by the scalar multipli-
cation on the tensor product. That is, the multiplication

T r(M)× T s(M)→ T r+s(M)

is associative and bilinear with respect to A, so that T (M) becomes a ring.
In fact, it is an A-algebra, in the sense that A embeds into T (M) as the
0-th grade. Note that M is mapped into the 1-st grade. We say elements in
T r(M) are homogeneous of degree r.

Taking the tensor algebra is functorial: module maps f : M → N give
tensor algebra maps T (f) : T (M) → T (N). The map T (f) acts on each
coordinate in a simple tensor.
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1.7.3 Definition of Clifford algebras

In the rest of this expository article we let K be a field of characteristic not
equal to 2 and assume that E is a finite dimensional vector space over K
with a nondegenerate quadratic form Q on it.

A Clifford algebra CQ = CQ(K) associated to the quadratic form Q on
the vector space E is a K-algebra with the properties that

(i) We can embed E in CQ by a linear map.

(ii) Squaring in E ⊂ CQ corresponds to the quadratic form Q.

(It is in fact the universal such object; see [Lan, XIX §4.]). It is formed
as a quotient of the tensor algebra T (E) (Section 1.7.2) (so that item (i) is
satisfied). Let ΦQ be the symmetric bilinear form associated to a quadratic
form Q, namely

ΦQ(x, y) =
1

2

(
Q(x+ y)−Q(x)−Q(y)

)
.

The Clifford algebra is
C(Q) := T (E)/aQ

where aQ is the ideal generated by the elements

x⊗ y + y ⊗ x− 2ΦQ(x, y), x, y ∈ E.

This implies that in C(Q), we have

x · x = Q(x).

Please note that in general, however, x · y 6= ΦQ(x, y) (in other words, the
multiplication is determined by ΦQ but is not just given by ΦQ directly). In
particular, the multiplication in C(Q) is not in general commutative. The
Clifford algebra is, of course, no longer graded by Z, but we will see later
that it is Z/2Z-graded.

1.7.4 Basis and computations in a Clifford algebra

We will now specify a basis of CQ as a K-vector space. Choose an or-
thonormal basis (e1, . . . , en) of E with respect to ΦQ. In CQ we can multiply
elements of E, and we find that

ei · ej = −ej · ei, for i 6= j, and e2i = Q(ei). (6)
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Let Pn be the power set of {1, 2, . . . , n}. It will index the basis. For M ∈ Pn
consisting of elements j1 < · · · < jr, define

eM := ej1 · · · ejr ,

and e∅ := 1. Then a basis of CQ is

{eM : M ∈ Pn}.

(See [BtD] Chapter I, Corollary 6.7). In particular, CQ is a 2n-dimensional
vector space over K, where n = dimK E. By the relations (6) above, the
product of two basis vectors eM and eN is a K-multiple of some other basis
vector eL.

1.7.5 Examples

Let K = R and E = Rn. Every nondegenerate quadratic form Q on E is
equivalent to one of signature (p, q). The corresponding Clifford algebra is
denoted by Cp,q(R).

We can check that C0,0(R) ' R and C0,1(R) ' C. The algebra C0,2(R)
has R-basis (1, e1, e2, e1e2) where (e1, e2) is the standard basis of R2. Direct
computation shows that the last three basis elements square to −1 and anti-
commute, so we recover the Hamilton quaternions.

If K = C, every nondegenerate quadratic form is equivalent to the diag-
onal form

Q(z) = z21 + · · ·+ z2n.

Therefore, up to isomorphism there is a unique nondegenerate Clifford alge-
bra Cn(C) for each n. The first few examples are C0(C) ' C, C1(C) ' C⊕C,
and C2(C) ' Mat2×2(C), the algebra of 2× 2-complex matrices.

On the other hand, if the quadratic form Q is zero, then the Clifford
algebra is isomorphic to the exterior algebra

∧
(E) =

⊕dimK E
j=0

∧j(E).

1.7.6 The main involution and the decomposition of the Clifford
algebra

An automorphism of an algebra is an invertible linear map which preserves
multiplication. An anti-automorphism is an invertible linear map which re-
verses multiplication, i.e. f(ab) = f(b)f(a). An automorphism or anti-
automorphism is an involution if it is self-inverse.
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The reflection through the origin x 7→ −x on E is an involution that
extends to a linear map (denoted ∗) on the tensor algebra T (E) by acting
coordinatewise on tensor products, i.e.

(x1 ⊗ · · · ⊗ xk)∗ = −x1 ⊗ · · · ⊗ −xk.

This map on T (E) preserves the ideal aQ defining CQ and so it descends to
a map on CQ. This is called the main involution or grade involution. Let
M ∈ Pn with |M | = r. Then by (6), we have

e∗M := (−1)r · eM .

We have a decomposition of CQ introduced by the main involution ∗:
CQ = C0

Q ⊕ C1
Q where Cj

Q = {x ∈ CQ | x∗ = (−1)jx}. And because ∗ is an
automorphism we have

Ci
QC

j
Q = Ci+j

Q

where i, j ∈ Z/2Z. This gives the Z/2Z-grading structure on CQ. The sub-
space C0

Q is a subalgebra of CQ, called the even subalgebra3. The elements
which lie completely in either C0

Q or C1
Q are called homogeneous.

1.7.7 The main anti-involution

A tensor algebra T (E) has a unique anti-involution called the main anti-
involution or canonical anti-involution or transposition:

(x1 ⊗ · · · ⊗ xk)t := xk ⊗ · · · ⊗ x1.

It is the identity on E (the 1-st grading) and it preserves the ideal aQ defining
the Clifford algebra, so that it descends to an anti-involution on the Clifford
algebra of the same name. Using (6), we obtain

etM = (−1)
r(r−1)

2 · eM .

We observe that these two involutions ∗ and t commute. One can also
construct an anti-involution x := x∗t which must then satisfy

eM = (−1)
r(r+1)

2 · eM .
3The odd part C1

Q is not a subalgebra.
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1.7.8 The Clifford norm and spinor norm

Using the involutions we can define two important norms in CQ.
For any x ∈ CQ we define the Clifford norm as

N(x) = xx = xx

and the spinor norm as
Q(x) = xtx = xxt.

Both of these norms are homomorphisms from CQ to K. We use the notation
Q for the spinor norm because restricted to the anisotropic vectors of Q in
E (those v ∈ E such that Q(v) 6= 0) the spinor norm coincides with the
quadratic form Q.

1.8 Clifford group

1.8.1 Overview

The Clifford group Γ is a subgroup of the unit group of the Clifford algebra,
and it comes with a natural action on E, i.e. a representation

ρ : Γ→ GL(E).

We will see that the elements of the Clifford group from E act by reflection in
the corresponding hyperplane, and these elements generate the full orthogo-
nal group OQ(K) by the Cartan-Dieudonné Theorem; this is in fact the full
image. The sequence of reasoning and proofs in this section are all adapted
from [BtD, Chapter 1.6].

1.8.2 Definition of the Clifford group

We will write C×Q for the unit group of the Clifford algebra. Following Atiyah,
Bott and Shapiro’s convention, we define the twisted conjugation action on
a Clifford algebra by an invertible element x as

y 7→ yx = x∗yx−1.

The Clifford group is:

Γ = ΓQ(K) = {x ∈ C×Q : x is homogeneous and x∗Ex−1 ⊂ E}.
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The main involution is an automorphism of CQ, therefore Γ is a group.
Clearly, K× ⊂ Γ. Furthermore, the anisotropic elements of E are in C×Q

and therefore in Γ.
We will divide Γ into two complementary subsets:

Γ0 = Γ ∩ C0
Q, Γ1 = Γ \ Γ0.

In other words, Γj is the subset of elements of degree j (j = 0, 1). Moreover
Γ0 is a normal subgroup of Γ of index 2. Elements of Γ0 will be called even,
while elements of Γ1 will be called odd. Every element of Γ can be written
as a sum of an even and an odd.

1.8.3 The representation ρ : Γ � OQ(K)

The natural representation of Γ on E is

ρ : Γ→ GL(E), x 7→ ρx

given by
ρx : E → E, v 7→ x∗vx−1.

Our goal is to prove the following theorem.

Theorem 2. The image ρ(Γ) is equal to the orthogonal group OQ(K).

We will need a sequence of lemmas.

Lemma 3. For any x ∈ E ⊂ CQ with Q(x) 6= 0, the map ρx : E → E given
by ρx(v) = x∗vx−1 is the reflection about the hyperplane x⊥ orthogonal to the
vector x.

Proof. Recall that the reflection s about the hyperplane x⊥ orthogonal to
the vector x is given by

s(v) = v − 2
ΦQ(v, x)

Q(x)
x.

But we are computing within the Clifford algebra and hence x2 = Q(x) · 1
and 2ΦQ(v, x) · 1 = vx+ xv.
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Therefore we compute that

s(v) = v − 2
ΦQ(v, x)

Q(x)
x

= v − 2ΦQ(v, x)
x

Q(x)

= v − (vx+ xv)x−1

= −xvx−1

= x∗vx−1

since for all x ∈ E the main involution gives x∗ = −x.

Lemma 4. The kernel of the homomorphism ρ : Γ→ GL(E) is K×.

Proof. The kernel clearly contains K×. Conversely, consider an element of Γ
that acts trivially; write it a0+a1, with a0 even and a1 odd. Then (a0+a1)v =
v(a0 + a1)

∗ = v(a0 − a1) for all v ∈ E. Separating even and odd parts we
deduce that a0v = va0 and a1v = −va1. Now choose an orthonormal basis
ε1, . . . , εn for E with respect to Q. We may write a0 = x+ ε1y where x ∈ C0

Q

and y ∈ C1
Q and neither x nor y contains a factor of ε1, so ε1x = xε1 and

ε1y = −yε1. Using the relation a0v = va0 with v = ε1 we obtain that y = 0.
Thus a0 has no monomials with a factor ε1. Similarly, it has no monomials
with any εi, meaning a0 ∈ K.

Similarly, write a1 = y + ε1x with x and y not containing a factor of ε1.
The relation a1ε1 = −ε1a1 tells us that x = 0. Repeating with the other
basis elements, we deduce that a1 = 0.

Therefore a0 + a1 = a0 ∈ K ∩ Γ = K×.

Lemma 5. Restricting the spinor norm Q to Γ gives a homomorphism Q :
Γ→ K×.

Proof. For x ∈ Γ, to show that Q(x) = xtx ∈ K×, the key idea is to show
that ρ(xtx) = 1 and then use Lemma 4.

We firstly show that if x ∈ Γ then N(x) acts trivially on E. Since x ∈ Γ,
we have x∗vx−1 ∈ E for all v ∈ E. Moreover, transpose v 7→ vt is the identity
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on E. We compute

(xx)∗v(xx)−1 = xtx∗v
(
x∗tx

)−1
= xtx∗vx−1

(
x∗t
)−1

= xt(x∗vx−1)t
(
x∗t
)−1

= xt(x−1)tvx∗t(x∗t)−1

= v

Thus xx = N(x) is in the kernel of ρ. Also notice that N : Γ → K× is a
homomorphism because for all x, y ∈ Γ we have xy = y x.

Recall that Γ consists of homogeneous elements. On the even elements
of Γ the spinor norm Q agrees with the Clifford norm N, and on the odd
elements Q = −N. Therefore Q is also a homomorphism from Γ to K× by
Lemma 4.

Proof of Theorem 2. By Lemma 5, Q is a homomorphism on Γ. Therefore,

Q(x∗vx−1) = Q(x∗)Q(v)Q(x)−1 = Q(v)

and therefore the action on E preserves the quadratic form Q of E. Thus we
have a homomorphism Γ → OQ(K). We have shown in Lemma 3 that any
x ∈ E ⊂ Γ acts on E by reflection through the hyperplane x⊥. Moreover with
the hypothesis that the characteristic of K is not 2, the Cartan-Dieudonné
theorem tells us that every element in OQ(K) is a product of at most dimE
simple reflections (cf. [Lam, Chapter I, Theorem 7.1]). Hence we deduce that
the image of ρ(Γ) is OQ(K).

1.9 The spin homomorphism via the Clifford group

1.9.1 Overview

In the Clifford group, we define the Pin and Spin subgroups, which there-
fore map onto OQ(K) and SOQ(K). In our case of interest, we show that
Spin1,3(R) is isomorphic to SL2(C). This recovers the Spin homomorphism.
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1.9.2 Pin and Spin groups

The spinor norm on Γ restricts to the squaring map x 7→ x2 on K×, so the
elements of K with spinor norm 1 are {±1}. By Theorem 2, and Lemmas
4 and 5, we get a map induced from the spinor norm which is also denoted
by Q : OQ → K×/(K×)2. It is the unique homomorphism sending reflection
through x⊥ to Q(x) modulo (K×)2.

From this perspective, it is natural then to define the Pin group:

PinQ(K) = {x ∈ Γ(K) | Q(x) = 1}.

Define also
SpinQ(K) = PinQ(K) ∩ Γ0(K),

the even elements of PinQ. Then we have two exact sequences:

1 // {±1} // PinQ(K) // OQ(K) // K/(K×)2

1 // {±1} // SpinQ(K) // SOQ(K) // K/(K×)2

(7)

1.9.3 Examples, K = R.

Let us see some examples. Let K = R. Then R/(R×)2 = {±1}. Let E be an
n-dimensional real vector space.

Positive Definite. If Q is a positive definite quadratic form over R, we
write On, Spinn etc. In this case, the spinor norm Q maps everything to 1
(modulo squares). So the spinor norm on positive definite space is trivial.
We get double covers

1 // {±1} // Pinn(R) // On(R) // 1

1 // {±1} // Spinn(R) // SOn(R) // 1

One can verify that Spin3(R) is isomorphic to SU(2), the group of 2× 2
unitary matrices with determinant 1, which is in turn isomorphic to the group
of norm 1 Hamilton quaternions. Since SU(2) is the double cover of SO3(R)
we have verified the last exact sequence above for n = 3.
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Negative definite. On the other hand, if Q is negative definite, be-
cause every reflection has image −1 in R/(R×)2, so the spinor norm is the
determinant map det : O(R)→ {±1}.

Indefinite. Now we look at the indefinite signature case. For instance, in
the Minkowski spacetime R1,3, reflection through a spacelike vector (space in-
version) has spinor norm −1 and det−1; reflection through a timelike vector
(time reversal) has spinor norm +1 and det−1. We recover the component
group of the Lorentz group O(1, 3), defined by O(1, 3)/SO+(1, 3), which is
isomorphic to the Klein four group.

1.9.4 The isomorphism SL2(C) ' Spin1,3(R)

We follow [EGM, Chapter 1, 1.3] to construct this isomorphism (and omit
details).

Let (fj)0≤j≤3 be an orthonormal basis of R1,3 associated to the quadratic
form

Q(tf0 + xf1 + yf2 + zf3) = Q(t, x, y, z) = t2 − x2 − y2 − z2.

The corresponding Clifford algebra is C1,3(R).
Inside the Minkowski spacetime R1,3 we have two sub-vector spaces V0 =

Rf0 + Rf1 + Rf2 and V ′ = Rf3. On V0 we have a quadratic form

Q0(tf0 + xf1 + yf2) = Q0(t, x, y) = t2 − x2 − y2,

while on V ′ we have another quadratic form Q′(ze3) = −z2. The Clifford
algebra associated to (V ′, Q′) (denoted by C0,1(R)) is isomorphic to C.

We firstly describe the isomorphism Mat2×2(R) ' C0
1,2(R). To do this we

define

τ0 =
1

2
(f0 + f1), τ1 =

1

2
(f0 − f1),

u = τ1τ0 =
1

2
(1 + f0f1), w1 = τ1f2 =

1

2
(f0f2 − f1f2),

w0 = τ0f2 =
1

2
(f0f2 + f1f2), v = τ0f1 =

1

2
(1− f0f1).

(8)

We claim that

Proposition 6. [EGM, Chapter 1, Proposition 3.2] The correspondences(
1 0
0 0

)
7→ u,

(
0 1
0 0

)
7→ w1,

(
0 0
1 0

)
7→ w0,

(
0 0
0 1

)
7→ v

17



extends to an algebra isomorphism ψ : Mat2×2(R)→ C0
1,2(R).

Next, we define a map • : C0,1(R)→ C0
1,3(R) by the following formula:( ∑

M∈Pn

λMeM
)•

=
∑
M∈Pn

λM(f0f1f2)
εM eM

where εM is 0 or 1 if the cardinality of M is even or odd. One can show that
this map • commutes with the transpose t of Clifford algebras. Moreover the
map • : C0,1(R)→ C0

1,3(R) is an R-algebra monomorphism.

Now we combine the • operation and the isomorphism in Proposition 6
and obtain the following result.

Proposition 7. [EGM, Chapter 1, Proposition 3.5] The map

ψ : Mat2×2(C0,1(R)) = Mat2×2(C)→ C0
1,3(R)

defined by (
α β
γ δ

)
7→ α•u+ β•w1 + γ•w0 + δ•v

is an R-algebra isomorphism and satisfies(
ψ

(
α β
γ δ

))t
= ψ

(
δt −βt
−γt αt

)
This R-algebra isomorphism ψ restricts to a group isomorphism

ψ : SL2(C0,1(R)) = SL2(C)→ Spin1,3(R).

Remark. More generally, by the structure theory of Clifford algebras,
for all p, q ∈ Z>0 we have the following isomorphisms:

(i) Cp+1,q+1(R) = Mat2×2(R)⊗ Cp,q(R);

(ii) C0
p,q+1(R) = Cp,q(R).

Combine with C0,1(R) = C and Mat2×2(R) ⊗ C = Mat2×2(C), we have
the following isomorphism: Mat2×2(C) ' C1,2(R) ' C0

1,3(R). Now we restrict
the isomorphism ψ : Mat2×2(C) ' C0

1,3(R) to the norm 1 (det 1) elements
and obtain the isomorphism ψ : SL2(C) ' Spin1,3(R).
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1.9.5 The Spin homomorphism

Combining (7) with the isomorphism of the last section, we recover the spin
homomorphism.
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