Weaknesses in Ring-LWE

joint with
(Yara Elias, Kristin E. Lauter, and Ekin Ozman)
and
(Hao Chen and Kristin E. Lauter)

ECC, September 29th, 2015
Lattice-Based Cryptography

- **Post-quantum cryptography**
- **Ajtai-Dwork**: public-key crypto based on a shortest vector problem (1997)
- **Hoffstein-Pipher-Silverman**: NTRU working in \(\mathbb{Z}[X]/(X^N - 1) \) (1998) – now standardized
- **Gentry**: Homomorphic encryption using ideal lattices (2009): perform ring operations on encrypted ring elements, to obtain correct encrypted result, without key:
 1. Medical records
 2. Machine learning
 3. Genomic computation
Hard problems in lattices

Setting: A lattice in \mathbb{R}^n with norm. A lattice is given by a (potentially very bad) basis.

- **Shortest Vector Problem (SVP):** find shortest vector or a vector within factor γ of shortest.
- **Gap Shortest Vector Problem (GapSVP):** differentiate lattices where shortest vector is of length $< \gamma$ or $> \beta \gamma$.
- **Closest Vector Problem (CVP):** find vector closest to given vector
- **Bounded Distance Decoding (BDD):** find closest vector, knowing distance is bounded (unique solution)
- **Learning with Errors (Regev, 2005)**
Learning with errors

Problem: Find a secret $s \in \mathbb{F}_q^n$ given a linear system that s approximately solves.

- Gaussian elimination amplifies the ‘errors’, fails to solve the problem.

In other words, find $s \in \mathbb{F}_q^n$ given multiple samples $(a, \langle a, s \rangle + e) \in \mathbb{F}_q^n \times \mathbb{F}_q$ where
 - q prime, n a positive integer
 - e chosen from error distribution χ

Origins: attacks on hardness of other lattice problems, e.g. an LWE oracle of modulus q gives base q digits of solution to Bounded Distance Decoding.
Ideal Lattices:

- lattices generated by an ideal of a number field
- extra symmetries
 - saves space
 - speeds computations
Ring Learning with Errors (Ring-LWE)

Search Ring-LWE (Lyubashevsky-Peikert-Regev, Brakerski-Vaikuntanathan):

- $R = \mathbb{Z}[x]/(f)$, f monic irreducible over \mathbb{Z}
- $R_q = \mathbb{F}_q[x]/(f)$, q prime
- χ an error distribution on R_q
- Given a series of samples $(a, as + e) \in R_q^2$ where
 1. $a \in R_q$ uniformly,
 2. $e \in R_q$ according to χ,
 find s.

Decision Ring-LWE:

- Given samples (a, b), determine if they are LWE-samples or uniform $(a, b) \in R_q^2$.

Currently proposed: R the ring of integers of a cyclotomic field (particularly 2-power-cyclotomics).
A simple public-key cryptosystem (think El Gamal)

Public: q, n, f forming R_q, error χ, plus $k \in \mathbb{Z}$ moderately large

Alice: Secret small $s \in R_q$

Bob: Message $0 < m < q/k$, random small $r \in R_q$

Protocol:

\[
\begin{align*}
\text{Alice} & \quad \rightarrow \quad \text{public key} \quad \rightarrow \\
& \quad = \quad (a, b = as + e_1) \\
& \quad \leftarrow \quad \text{ciphertext} \\
& \quad = \quad (v = ar + e_2, w = br + e_3 + km) \\
\text{Bob} & \quad \leftarrow
\end{align*}
\]

Decryption: $w - vs = km + re_1 + se_2 + e_3$, round to nearest multiple of k.
Generic attacks on LWE problem

- Time $2^{O(n \log n)}$
 - maximum likelihood, or;
 - waiting for a to be a standard basis vector often enough
- Time $2^{O(n)}$
 - Blum, Kalai, Wasserman
 - engineer a to be a standard basis vector by linear combinations
- Distinguishing attack (decision) and Decoding attack (search)
 - $>\,$ polynomial time
 - relying on BKZ algorithm
 - used for setting parameters

These apply to Ring-LWE.
Polynomial embedding: Think of R as a lattice via

$$R \hookrightarrow \mathbb{Z}^n \hookrightarrow \mathbb{R}^n, \quad a_n x^n + \ldots + a_0 \mapsto (a_n, \ldots, a_0).$$

Note: multiplication is ‘mixing’ on coefficients.
Actually work modulo q:

$$R_q \hookrightarrow \mathbb{F}_q^n, \quad a_n x^n + \ldots + a_0 \mapsto (a_n \mod q, \ldots, a_0 \mod q).$$

Naive sampling: Sample each coordinate as a one-dimensional discretized Gaussian. This leads to a discrete approximation to an n-dimensional Gaussian.
Minkowski embedding: theoretical

Minkowski embedding: A number field K of degree n can be embedded into \mathbb{C}^n so that *multiplication and addition are componentwise*:

$$
K \hookrightarrow \mathbb{C}^n, \quad \alpha \mapsto (\alpha_1, \alpha_2, \ldots, \alpha_n)
$$

where α_j are the n Galois conjugates of α. Massage into \mathbb{R}^n:

$$
\phi : \mathbb{R} \hookrightarrow \mathbb{R}^n, \quad (\alpha_1, \ldots, \alpha_r, \Re(\alpha_{r+1}), \Im(\alpha_{r+1}), \ldots).
$$

As usual, then we work modulo q (modulo prime above q).

Sampling: Discretize a Gaussian, spherical in \mathbb{R}^n under the usual inner product.

Relation to LWE: Each Ring-LWE sample $(a, as + e) \in R_q^2$ is really n LWE samples $(a_ie_i, \langle a_ie_i, s \rangle + e_i) \in (\mathbb{Z}/q\mathbb{Z})^{n+1}$.
Distortion of the error distribution

Distortion: A spherical Gaussian in Minkowski embedding is not spherical in polynomial embedding.

Linear transformation:

\[
\mathbb{Z}[X]/f(X) \rightarrow \phi(R)
\]

Spectral norm: The radius of the smallest ball containing the image of the unit ball.
Setting parameters

- n, dimension
- q, prime
 - q polynomial in n (security, usability)
- f or a lattice of algebraic integers
- χ, error distribution
 - Poly-LWE in practice
 - Ring-LWE in theory
 - Poly-LWE = Ring-LWE for 2-power cyclotomics
 - Gaussian with small standard deviation σ

Example: $n \approx 2^{10}, \quad q \approx 2^{31}, \quad \sigma \approx 8$
Decision Poly-LWE Attack of Eisenträger, Hallgren and Lauter

Potential weakness: \(f(1) \equiv 0 \mod q. \)

\[
R_q \xrightarrow{\text{evaluation at 1}} \mathbb{F}_q
\]

\[
(a, b = as + e) \xrightarrow{\text{ring homomorphism}} (a(1), b(1) = a(1)s(1) + e(1))
\]

Guess \(s(1) = g \), graph supposed errors \(b(1) - a(1)g \):

Incorrect

Correct
Implementation: root of small order

Conditions: $f(\alpha) \equiv 0 \pmod{q}$ where

- $\alpha = \pm 1$ and $8\sigma\sqrt{n} < q$; or
- α small order $r \geq 3$, and $8\sigma\sqrt{n(\alpha^r - 1)/r(\alpha^2 - 1)} < q$

Attack:

- Loop through residues $g \in \mathbb{Z}/q\mathbb{Z}$
 - Loop through ℓ samples:
 - Assume $s(\alpha) = g$, derive assumptive $e(\alpha)$.
 - If $e(\alpha)$ not within $q/4$ of 0, throw out guess g, move to next g

Proposition (Elias-Lauter-Ozman-S.)

Runtime is $\tilde{O}(\ell q)$ with absolute implied constant.

- If algorithm keeps no guesses, samples are not PLWE.
- Otherwise, valid PLWE samples with probability $1 - (1/2)^\ell$.

Note: Similar implementation by enumerating and sorting possible error residues.
Desired properties for search Ring-LWE attack

For Poly-LWE attack
• f has root of small order

For moving the attack to Ring-LWE
• spectral norm is small

For search-to-decision reduction
• Galois fields
Condition for weak Ring-LWE instances

- σ = parameter for the Gaussian in Minkowski embedding
- M = change of basis matrix from Minkowski embedding of R to its polynomial basis.

Theorem (Elias-Lauter-Ozman-S.)

Let K be a number field with ring of integers $\cong \mathbb{Z}[x]/(f(x))$ where $f(1) \equiv 0 \pmod{q}$. Suppose the spectral norm $\rho(M)$ satisfies

$$\rho < \frac{q}{4\sqrt{2\pi\sigma n}}$$

Then Ring-LWE decision can be solved in time $\tilde{O}(\ell q)$ with probability $1 - 2^{-\ell}$ using ℓ samples.
Theorem (Elias-Lauter-Ozman-S.)

Under various technical conditions, members of the family

\[f(x) = x^n + q - 1 \]

with prime \(q \), are weak.
Successful attacks (Elias-Lauter-Ozman-S.)

Thinkpad X220 laptop, Sage Mathematics Software

<table>
<thead>
<tr>
<th>case</th>
<th>(f)</th>
<th>(q)</th>
<th>(w)</th>
<th>samples per run</th>
<th>successful runs</th>
<th>time per run</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLWE</td>
<td>(x^{1024} + 2^{31} - 2)</td>
<td>(2^{31} - 1)</td>
<td>3.192</td>
<td>40</td>
<td>1 of 1</td>
<td>13.5 h</td>
</tr>
<tr>
<td>Ring</td>
<td>(x^{128} + 524288x + 524285)</td>
<td>524287</td>
<td>8.00</td>
<td>20</td>
<td>8 of 10</td>
<td>24 s</td>
</tr>
<tr>
<td>Ring</td>
<td>(x^{192} + 4092)</td>
<td>4093</td>
<td>8.87</td>
<td>20</td>
<td>1 of 10</td>
<td>25 s</td>
</tr>
<tr>
<td>Ring</td>
<td>(x^{256} + 8190)</td>
<td>8191</td>
<td>8.35</td>
<td>20</td>
<td>2 of 10</td>
<td>44 s</td>
</tr>
</tbody>
</table>
Search-to-decision

\[
\begin{align*}
K & \quad R & q_1 \cdots q_g = qR & \quad R/qR & \cong \mathbb{F}_{q^f} \\
\mid n & \quad \mid & \quad \mid & \quad \mid & \quad \parallel f \\
\mathbb{Q} & \quad \mathbb{Z} & \quad q & \quad \mathbb{Z}/q\mathbb{Z} & \cong \mathbb{F}_q
\end{align*}
\]

\[R/qR \rightarrow R/qR\]

- Our attacks recover \(s(1)\), i.e., the secret modulo \(q\). That is, it solves Search-RLWE-\(q\).

Proposition (Eisenträger-Hallgren-Lauter, Chen-Lauter-S.)

Suppose \(K/\mathbb{Q}\) is Galois of degree \(n\), and \(q\) a prime of residual degree \(f\). Suppose there is an oracle which solves Search-RLWE-\(q\). Then by \(n/f\) calls to the oracle, it is possible to solve Search-RLWE.

This implies a regular Search-to-Decision reduction.
Abstracting the key idea

If \(q \) is a prime above \((q)\), then we have a ring homomorphism

\[
\phi : R_q = R/(q) \to R/q \cong \mathbb{F}_{q^f}.
\]

This preserves the structure of samples:

\[
(a, as + e) \mapsto (\phi(a), \phi(a)\phi(s) + \phi(e))
\]

Possibly weak if

1. image space is **small** enough to search
2. error distribution is **non-uniform** after \(\phi \)
Attacking

If \(q \) is a prime above \((q)\), then we have a ring homomorphism

\[
\phi : R_q = R/(q) \rightarrow R/q \cong \mathbb{F}_{q^f}.
\]

Suppose

1. image space is \textbf{small} enough to search
2. error distribution is \textbf{non-uniform} after \(\phi \)

Attack:

1. Loop through \(g \in \mathbb{F}_{q^k} \) for putative \(\phi(s) \)
2. Test distribution of \(\phi(b) - \phi(a)g \) (putative \(\phi(e) \)) on available samples.
Chi-square test for uniform distribution

Consider samples y_1, \ldots, y_M from a finite set

$$S = \bigsqcup_{j=1}^{r} S_j$$

- Expected number of samples in S_j is $c_j = \frac{|S_j|^M}{|S|}$.
- Actual number: t_j.
- χ^2 statistic:

$$\chi^2(S, y) = \sum_{j=1}^{r} \frac{(t_j - c_j)^2}{c_j}.$$

Follows a known distribution.
Implementation: chi-square attack (Chen-Lauter-S.)

Setup:

- Homomorphism: $R_q \rightarrow R/q$.
- Error distribution is distinguishable from uniform on R/q.

Search-RLWE-$_q$ Attack:

- Loop through residues $g \in R/q$.
 - Assume $\phi(s) = g$, derive assumptive $\phi(e)$ for all samples
 - Compute χ^2 statistic on the collection
 - If looks uniform, throw out guess g
- If no g remain, samples were not RLWE.
- If ≥ 2 possible g remain, need more samples.
- If exactly one g remains, it is the secret modulo q.

Search-RLWE Attack:

- Run the Search RLWE-$_q$ attack on each galois conjugate image of s.
- Combine using Chinese Remainder Theorem.
Security of an instance of Ring-LWE

- Fixing R and q, there is a finite list of homomorphisms.
- Therefore, to be assured of immunity of an instance of RLWE to this family of attacks, need only check that finitely many distributions look uniform!
Galois examples (Chen-Lauter-S.)

We have no galois examples of residue degree 1. But in residue degree 2 (slower but still feasible), there are examples:

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>q</th>
<th>f</th>
<th>σ_0</th>
<th>no. samples</th>
<th>runtime (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2805</td>
<td>40</td>
<td>67</td>
<td>2</td>
<td>1</td>
<td>22445</td>
<td>3.49</td>
</tr>
<tr>
<td>15015</td>
<td>60</td>
<td>43</td>
<td>2</td>
<td>1</td>
<td>11094</td>
<td>1.05</td>
</tr>
<tr>
<td>15015</td>
<td>60</td>
<td>617</td>
<td>2</td>
<td>1.25</td>
<td>8000</td>
<td>228.41 (estimated)</td>
</tr>
<tr>
<td>90321</td>
<td>80</td>
<td>67</td>
<td>2</td>
<td>1</td>
<td>26934</td>
<td>4.81</td>
</tr>
<tr>
<td>255255</td>
<td>90</td>
<td>2003</td>
<td>2</td>
<td>1.25</td>
<td>15000</td>
<td>1114.44 (estimated)</td>
</tr>
<tr>
<td>285285</td>
<td>96</td>
<td>521</td>
<td>2</td>
<td>1.1</td>
<td>5000</td>
<td>75.41 (estimated)</td>
</tr>
<tr>
<td>1468005Z</td>
<td>100</td>
<td>683</td>
<td>2</td>
<td>1.1</td>
<td>5000</td>
<td>276.01 (estimated)</td>
</tr>
<tr>
<td>1468005</td>
<td>144</td>
<td>139</td>
<td>2</td>
<td>1</td>
<td>4000</td>
<td>5.72</td>
</tr>
</tbody>
</table>

Found by search through fixed fields of subgroups of galois group of cyclotomic extensions.
Reasons for non-uniform distribution

- **almost always** uniform
- **Reason 1 for non-uniformity** (Elias-Lauter-Ozman-S.):
 - residue degree 1
 - there is a short basis whose elements coincide frequently modulo q.
 - example, root of small order
- **Reason 2 for non-uniformity** (Chen-Lauter-S.):
 - residue degree 2
 - there is a short basis whose elements are in a subfield frequently modulo q.

There’s no reason there shouldn’t be galois examples with Reason 1, but they are very rare. Reason 2 is easier, and galois examples **have been found**.
Cyclotomic vulnerability

Under other error distributions (Elias-Lauter-Ozman-S.):

- Use f the minimal polynomial of $\zeta_{2^k} + 1$.
- Example: $k = 11, q = 45592577 \approx 2^{32}$
 - Galois,
 - q splits completely,
 - has root -1 modulo q,
 - spectral norm is unmanageably large.

If one uses the ramified prime (Chen-Lauter-S.):

- Here, $f(1) \equiv 0 \pmod{q}$
- Attack verified in practice
Cyclotomic invulnerability

- Unramified primes, standard Ring-LWE distribution.
- **To Reason 1** (Elias-Lauter-Ozman-S.): The roots of the m-th cyclotomic polynomial have order m modulo every split prime q.
- **To Reason 2** (Chen-Lauter-S.): A very good short basis for the field is formed by the roots of unity; these *never* lie in subfields modulo q.
- **In practice:** Computed distributions modulo unramified q look uniform.
In conclusion

- The structure inherent in rings is exploitable
- The vulnerability has sensitive dependence on parameters
 - properties of the ring
 - properties of q (not just size)
 - properties of the error distribution