Frobenius and the endomorphism ring of \(j = 1728 \).

KATHERINE E. STANGE

Abstract. We give the endomorphism ring of the supersingular elliptic curve over \(\mathbb{F}_p \) with \(j = 1728 \), and show that although the endomorphism ring is invariant under isomorphism of the curve, the placement of Frobenius in that endomorphism ring is not.

I always have to look up the endomorphism ring of \(j = 1728 \) for the purposes of supersingular isogeny based cryptography, and the literature gave seemingly contradictory answers to this, until I did the computation contained in this note. The computation shows that on isomorphic models of \(j = 1728 \), Frobenius can actually be identified with non-isomorphic elements of the endomorphism ring. This behaviour is a result of the extra automorphisms of the curve, in this case manifest as the existence of a quartic twist.

Let \(p \equiv 3 \pmod{4} \) so that \(j = 1728 \) is a supersingular \(j \)-invariant over \(\mathbb{F}_p \). I know of at least two places the basis for the associated endomorphism is given:

1. Eisenträger, Hallgren, Lauter, Morrison, and Petit [1, Section 5.1] use the model \(E_1 : y^2 = x^3 + x \) and give the endomorphism ring as
 \[
 \text{End}(E_1) = \mathbb{Z} + i\mathbb{Z} + \frac{1 + k}{2}\mathbb{Z} + \frac{i + j}{2}\mathbb{Z}
 \]
 where \(i \) is the endomorphism \(\left[i \right] : (x, y) \mapsto (-x, iy) \) and \(j \) is the Frobenius endomorphism \(\pi_p : (x, y) \mapsto (x^p, y^p) \).

2. McMurdy [2, Section 3.1] use the model \(E_2 : y^2 = x^3 - x \) and give the endomorphism ring as
 \[
 \text{End}(E_2) = \mathbb{Z} + i\mathbb{Z} + \frac{1 + j}{2}\mathbb{Z} + \frac{i + k}{2}\mathbb{Z}
 \]
 where \(i \) is the endomorphism \(\left[i \right] : (x, y) \mapsto (-x, iy) \) and \(j \) is the Frobenius endomorphism \(\pi_p : (x, y) \mapsto (x^p, y^p) \).

The puzzling observation here is that in the first case, \(\frac{1 + \pi_p}{2} \notin \text{End}(E_1) \), while in the second case, \(\frac{1 + \pi_p}{2} \in \text{End}(E_2) \). In other words, although \(\text{End}(E_1) \cong \text{End}(E_2) \) by swapping \(j \) and \(k \), the element which acts as Frobenius is not preserved under the isomorphism (it remains \(j \)).

The answer to the puzzle is that the two models are quartic twists of one another. The isomorphism is

\[
\phi : E_1 \to E_2, (x, y) \mapsto (ix, e^{\frac{\pi}{p}}y)
\]
whose dual is

\[
\hat{\phi} : E_2 \to E_1, (x, y) \mapsto (-ix, e^{-\frac{\pi}{p}}y).
\]

One verifies that composing these, one obtains the identity.

One can make the identification

\[
\phi \text{End}(E_1)\hat{\phi} = \text{End}(E_2).
\]

In particular, \(\phi[i]\hat{\phi} = [i] \) because

\[
\phi[i]\hat{\phi}(x, y) = \phi[i](-ix, e^{\frac{-\pi}{p}}y) = \phi(ix, e^{\frac{\pi}{p}}y) = (-x, iy).
\]

But, \(\phi\pi_p\hat{\phi} = [i]\pi_p \) because

\[
\phi\pi_p\hat{\phi}(x, y) = \phi\pi_p(-ix, e^{\frac{-\pi}{p}}y) = \phi((-i)^px^p, e^{p-1}\frac{\pi}{p}y^p) = (-i^{p+1}x^p, e^{(p-1)\frac{\pi}{p}}y^p) = (-x^p, iy^p) = [i]\pi_p(x, y).
\]

Date: October 6, 2021, Draft #1.
In concordance with this observation, note that E_1 has only two 2-torsion points defined over \mathbb{F}_p, with the other two over \mathbb{F}_{p^2}, so the action of Frobenius on the 2-torsion can be given (with an appropriate choice of basis) by the matrix
\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}.
\]
However, on E_2, all 2-torsion is over the base field, meaning the matrix of Frobenius is the identity. Thus $1 + \pi_p$ has the matrix representations
\[
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} : \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\]
on $E_1[2]$ and $E_2[2]$ respectively. Therefore, $1 + \pi_p$ is not divisible by 2 in $\text{End}(E_1)$ but it is divisible by 2 in $\text{End}(E_2)$.

References

Department of Mathematics, University of Colorado, Campus Box 395, Boulder, Colorado 80309-0395

Email address: kstange@math.colorado.edu