QUIZ October 25, 2013

Clicker Instructions: A = True; B = False; C = I don't know; D = No truth valuecorrect = 1pt; don't know = 0pt; wrong = 0pt

1. Let

$$\mathcal{B} = \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}$$

be a basis for \mathbb{R}^2 . Let $\mathbf{x} = \begin{pmatrix} 1\\2 \end{pmatrix} \in \mathbb{R}^2$. Then

$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 1\\ 2 \end{pmatrix}.$$

2. Let

$$\mathcal{B} = 1 + t, t^2, 1$$

be a basis for \mathbb{P}_2 . Let $\mathbf{x} = t + t^2 \in \mathbb{P}_2$. Then

$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}.$$

1

- 3. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in a vector space V. Suppose that $3\mathbf{u} + 4\mathbf{v} = \mathbf{w}$ and that $2\mathbf{u} + 10\mathbf{v} = \mathbf{w}$. Then it is impossible that \mathbf{u} and \mathbf{v} form a basis for the vector space V.
- 4. Let \mathcal{B} be a basis for a vector space V. Then the mapping which takes any vector \mathbf{x} in V to its coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ relative to \mathcal{B} is a linear transformation.