QUIZ September 23, 2013

Clicker Instructions: A = True; B = False; C = I don't know; D = No truth value correct = 1pt; don't know = 0pt; wrong = -1pt

1. Suppose

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Let T be the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$. Then

$$T(\mathbf{u}) = \begin{bmatrix} 6\\15\\0 \end{bmatrix}.$$

- 2. A linear transformation is any map such that
 - (a) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T.
 - (b) $T(c\mathbf{u}) = T(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

1

- 3. Let A be a 3×4 matrix whose entries are all zero. The range of the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is the zero vector in \mathbb{R}^3 .
- 4. The following matrix represents a dilation on \mathbb{R}^2 :

$$\begin{bmatrix} 0.3 & 0 \\ 0 & 0.3 \end{bmatrix}.$$