An invitation to category theory

Note: The answers to this are especially easy to find online or elsewhere, so please take a stab at it before you google anything.

Let $\mathcal{C} = (\mathcal{O}, \mathcal{M})$ be a category, and let X_1 and X_2 be objects.

Definition 1. An object X is called the product of X_1 and X_2 , denoted $X_1 \times X_2$ if it has two morphisms $\pi_1 : X \to X_1$ and $\pi_2 : X \to X_2$ with the following property.

- (Property A) For any object Y and morphisms $f_1: Y \to X_1$ and $f_2: Y \to X_2$, there exists a unique morphism $f: Y \to X$ such that $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$.
- 1. Show that the product of two objects, if it exists, is unique up to isomorphism.
- 2. Determine whether the product exists and what it is, in the case of the category of sets. By 'what it is' I mean give an explicit construction of the object, or identify it by a name you already know. Please prove the object does in fact have the property.
- 3. Repeat the last part for the category of groups.

By 'reversing arrows,' we get the definition of a coproduct.

Definition 2. An object X is called the coproduct of X_1 and X_2 , denoted $X_1 \oplus X_2$ if it has two morphisms $i_1 : X_1 \to X$ and $i_2 : X_2 \to X$ with the following property.

- (Property B) For any object Y and morphisms f₁ : X₁ → Y and f₂ : X₂ → Y, there exists a unique morphism f : X → Y such that f₁ = f ∘ i₁ and f₂ = f ∘ i₂.
- 1. Show that the coproduct of two objects, if it exists, is unique up to isomorphism.
- 2. Determine whether the coproduct exists and what it is, in the case of the category of sets. Prove it, as above.
- 3. Repeat the last part for the category of groups.

Optional, no credit: Consider some other categories you know, like vector spaces or rings. Or even topological spaces (morphisms are continuous maps). Another optional, no credit: There is a way in which you can view groups as categories having a single object and invertible morphisms. Explain.