Some algebraic aspects of the Ring-Learning-with-Errors problem

Katherine E. Stange

SIAM, Bern, Switzerland, July 10th, 2019

Ring Learning with Errors

Let q be a prime. $(q \sim 12289)$

Let *m* be a power of 2, and n = m/2. ($n \sim 1024$)

Let $R = \mathbb{Z}[\zeta_m]$, the ring of integers of the *m*-th cyclotomics:

 $R \cong \mathbb{Z}[x]/(x^n+1).$

We use the basis

 $1, \zeta_m, \ldots, \zeta_m^{n-1}.$

Let

$$R_q := R/qR \cong R/\mathfrak{q}_1 \times \cdots \times R/\mathfrak{q}_k.$$

Ring Learning with Errors

 $R = \mathbb{Z}[x]/(x^n + 1), R_q = R/qR.$

Let χ be an *error distribution*, a probability distribution on R_q .

- 1. Want this to be supported near the origin.
- 2. Typically a discretized Gaussian distribution.
- 3. Feel free to imagine χ to be given by choosing each coefficient (in ζ -basis) independently uniformly (or normally) in a small interval.

Hidden in this is that we are working in a lattice with geometry, i.e. an inner product (use Minkowski embedding $R \hookrightarrow \mathbb{R}^n$ and standard inner product).

The Ring-LWE Problem

Search Ring-LWE Problem:

Let $s \in R_q$ be a fixed secret. Given a series of samples of the form

$$(a,b:=as+e)\in R_q\times R_q$$

where $a \in R_q$ is drawn randomly and $e \in R_q$ is drawn from the error distribution χ , determine *s*.

Decision Ring-LWE Problem:

Distinguish such samples from $(a, b) \in R_q \times R_q$ drawn randomly.

(notice the similarity to the discrete logarithm problem: given g, g^s , determine s)

(just plain) Learning-with-Errors

 $V \,{=}\, \mathbb{F}_q\,$ vector space

 $\mathbf{s} \in V$ secret

 χ an error distribution in \mathbb{F}_q

samples:

$$(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e) \in V \times \mathbb{F}_q$$

where we take $\mathbf{a} \in V$ uniformly and $e \in \mathbb{F}_q$ according to χ ,

Learning-with-Errors Problem: Given samples, determine s.

A Ring-LWE sample can be thought of as several LWE samples.

Ring Learning with Errors

Why Ring-LWE?

- 1. one of the principal contenders for NIST's post-quantum cryptography competition (26 contenders remain, 9 of which are LWE/Ring-LWE/LWR)
- 2. very adaptable (similar to DLP, but linear algebra)
- 3. homomorphic encryption
- 4. why rings? efficiency.

Attacks?

- 1. best attacks are generic attacks on Learning with Errors:
 - 1.1 reduce to a lattice problem
 - 1.2 Aurora-Ge (algebraic)
 - 1.3 Blum-Kalai-Wasserman (combinatorial)
- 2. for other rings of integers and distorted error distributions, the problem may be insecure

Our Question

Can the *algebraic* structure of Ring-LWE be exploited to attack the problem?

Available Algebraic Structure

- 1. Ring homomorphisms into smaller instances of the problem
- 2. Samples can be rotated, e.g.

$$(\zeta a, \zeta b) = (\zeta a, \zeta as + \zeta e)$$

- 3. Subrings are among subspaces
- 4. Multiplicative cosets of subrings are among subspaces
- 5. Orthogonality of the lattice for 2-power cyclotomics

Blum-Kalai-Wasserman for LWE

Key idea:

use a small linear combination of available a to obtain a vector in a subspace

Example:

Given some vectors $\mathbf{a} \in \mathbb{F}_q^2$, look for collisions in the first entry, so that $\mathbf{a}_1 - \mathbf{a}_2 \in \{0\} \times \mathbb{F}_q$.

Then, one can produce a new sample

$$(\mathbf{a}_1 - \mathbf{a}_2, \mathbf{b}_1 - \mathbf{b}_2) = (\mathbf{a}_1 - \mathbf{a}_2, \langle \mathbf{a}_1 - \mathbf{a}_2, s \rangle + e_1 - e_2)$$

with slightly inflated error.

Blum-Kalai-Wasserman for LWE

Key idea:

use a small linear combination of available **a** to obtain a vector in a subspace Advantage:

Given **a** with many zero entries, can reduce samples $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$ to a smaller LWE problem (on only the non-zero coordinates).

This smaller problem returns part of s (in that subset of coordinates).

Then we must *back-substitute* and work toward the next part of **s**.

Blum-Kalai-Wasserman for LWE

- 1. Table building (exponential)
 - 1.1 Build a table of values of **a** and wait for collisions in a small block of entries. Use these to build samples in lower dimension.
 - 1.2 Repeat on the next block, and next...
- 2. Solving (hopefully easy)
 - 2.1 Once the dimension is small enough, solve the smaller LWE problem.
- 3. Back-Substitution (exponential)
 - 3.1 Back-substitute the knowledge of s into the stored table.
 - 3.2 Collect samples in next small subspace.
- 4. Repeat 2 and 3 as needed.

Can we reduce Ring-LWE samples?

If we have a ring homomorphism ρ ,

$$(a, as + e) \mapsto (\rho(a), \rho(a)\rho(s) + \rho(e))$$

Big question: what is $\rho(\chi)$?

Can we reduce Ring-LWE samples?

If we have a ring homomorphism ρ ,

```
(a, as + e) \mapsto (\rho(a), \rho(a)\rho(s) + \rho(e))
```

```
Big question: what is \rho(\chi)?
```

Answer: pretty bad

Advantageous subspaces for a in Ring-LWE

Suppose $R_q = \mathbb{F}_{q^n}$. Suppose that $a_0 \in \mathbb{F}_{q^n}$ is fixed. Let \mathbb{F}_{q^d} be a subfield.

Suppose $a \in a_0 \mathbb{F}_{q^d}$. Then write $a = a_0 a', a' \in \mathbb{F}_{q^d}$.

$$(T(a), T(as+e)) = \left(a'T(a_0), a'T(a_0)\left(\frac{T(a_0s)}{T(a_0)}\right) + T(e)\right)$$

So we can reduce a sample, preserving its form.

Big Question:

How bad is the distribution $T(\chi)$?

Error distribution under the trace

Let k be a power of two. Basis of \mathbb{F}_{q^k} is $1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{k-1}$. Basis of $\mathbb{F}_{q^{k/2}}$ is $1, \zeta_m^2, \zeta_m^4, \dots, \zeta_m^{k-2}$. Then $(2\zeta_i^i, i = 0 \pmod{2})$

$$T(\zeta_m^i) = \begin{cases} 2\zeta_m^i & i \equiv 0 \pmod{2} \\ 0 & i \not\equiv 0 \pmod{2} \end{cases}$$

Why? The element ζ_m has minimal polynomial $x^2 - \zeta_m^2$.

Consequence:

Trace of an error distribution is still a decent error distribution!

An attack idea

If $R_q = \mathbb{F}_{q^n} \supset \mathbb{F}_{q^d}$:

- 1. Use BKW reduction to obtain *a* living in a multiplicative coset of $\mathbb{F}_{a^d}^*$.
- 2. Reduce samples to \mathbb{F}_{q^d} .
- 3. Solve Ring-LWE in \mathbb{F}_{q^d} , recovering some of secret (specifically, $T(a_0s)$).
- 4. Rotate samples $(a, b) \mapsto (\zeta a, \zeta b)$.
- 5. Reduce samples to \mathbb{F}_{q^d} .
- 6. Solve Ring-LWE in F_{qd}, recovering more of secret (specifically, T(ζa₀s)).
 7. Etc.

Blum-Kalai-Wasserman for Ring-LWE

- 1. Table building (exponential)
 - 1.1 Build a table of values of **a** and wait for collisions in a small block of entries. Use these to build samples in lower dimension.
 - 1.2 Repeat on the next block, and next...
- 2. Solving (hopefully easy)
 - 2.1 Once the dimension is small enough, solve the smaller LWE problem.
- 3. Back-Substitution (exponential)
 - 3.1 Back-substitute the knowledge of s into the stored table.

3.2 Collect samples in next small subspace.

4. Repeat 2 and 3 as needed.

It all still works fine.

Thank you! Thank you to our organizers!