An illustration in number theory

Katherine E. Stange

AMS Joint Central/Western Sectional Meeting, March 22, 2019

Let us begin with a sandpile...

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	2	0	0	0
0	0	2	8	2	0	0
0	0	0	2	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	2	0	2	0	0
0	1	0	4	0	1	0
0	0	2	0	2	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0

1,000 grains

500,000 grains

detail

Bak, Tang, Wiesenfeld: self-organized criticality

the discrete Laplacian

acting on functions $g: \mathbb{Z}^2 \to \mathbb{Z}$

$$\Delta g(x) = \sum_{y \sim x} (g(y) - g(x)).$$

the discrete Laplacian

acting on functions $g: \mathbb{Z}^2 \to \mathbb{Z}$

$$\Delta g(x) = \sum_{y \sim x} (g(y) - g(x)).$$

odometer

sandpile stabilizes to 0 in finite time

stablizable

2	2	2	2	1	2	2
2	2	2	1	6	1	2
2	2	2	2	1	2	2
2	2	1	2	2	2	2
2	1	6	1	2	2	2
2	2	1	2	2	2	2
2	2	2	2	2	2	2

2	2	2	2	1	2	2
2	2	2	1	6	1	2
2	2	2	2	1	2	2
2	2	1	2	2	2	2
2	1	6	1	2	2	2
2	2	1	2	2	2	2
2	2	2	2	2	2	2

2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2

4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4

4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4

4	0	4	1	0	1	4
0	4	0	4	2	4	0
4	0	4	1	0	1	4
0	4	0	4	2	4	0
4	0	4	1	0	1	4
0	4	0	4	2	4	0
4	0	4	1	0	1	4

4	0	4	1	0	1	4
0	4	0	4	2	4	0
4	0	4	1	0	1	4
0	4	0	4	2	4	0
4	0	4	1	0	1	4
0	4	0	4	2	4	0
4	0	4	1	0	1	4

4	0	4	3	0	3	4
0	4	1	0	4	0	1
4	0	4	3	0	3	4
0	4	1	0	4	0	1
4	0	4	3	0	3	4
0	4	1	0	4	0	1
4	0	4	3	0	3	4

4	0	4	3	0	3	4
0	4	1	0	4	0	1
4	0	4	3	0	3	4
0	4	1	0	4	0	1
4	0	4	3	0	3	4
0	4	1	0	4	0	1
4	0	4	3	0	3	4

4	1	0	4	0	4	0
0	4	3	0	4	0	3
4	1	0	4	0	4	0
0	4	3	0	4	0	3
4	1	0	4	0	4	0
0	4	3	0	4	0	3
4	1	0	4	0	4	0

4	1	0	4	0	4	0
0	4	3	0	4	0	3
4	1	0	4	0	4	0
0	4	3	0	4	0	3
4	1	0	4	0	4	0
0	4	3	0	4	0	3
4	1	0	4	0	4	0

4	3	0	4	0	4	0
1	0	4	0	4	0	4
4	3	0	4	0	4	0
1	0	4	0	4	0	4
4	3	0	4	0	4	0
1	0	4	0	4	0	4
4	3	0	4	0	4	0

4	3	0	4	0	4	0
1	0	4	0	4	0	4
4	3	0	4	0	4	0
1	0	4	0	4	0	4
4	3	0	4	0	4	0
1	0	4	0	4	0	4
4	3	0	4	0	4	0

0	4	0	4	0	4	0
3	0	4	0	4	0	4
0	4	0	4	0	4	0
3	0	4	0	4	0	4
0	4	0	4	0	4	0
3	0	4	0	4	0	4
0	4	0	4	0	4	0

0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0
4	0	4	0	4	0	4
0	4	0	4	0	4	0

Laplacians of integral odometers odometer → sandpile

$$ax + by + c \mapsto 0$$

 $ax^2+by^2+cxy \mapsto 2a+2b$

Laplacians of rational odometers odometer → sandpile

superharmonic quadratic growths Levine, Pegden, Smart

Let $A \in \text{Sym}_{2 \times 2}(\mathbb{R})$. We say an odometer g has *quadratic growth* A if

$$g(x) = x^t A x + o(|x|^2)$$

and we say that A is superharmonic if there is an odometer g with quadratic growth A and

 $\Delta g \leq 1.$

Let Γ be the set of such superharmonic *A*, as a subset of \mathbb{R}^3 :

$$A = \frac{1}{2} \begin{pmatrix} t - x & y \\ y & t + x \end{pmatrix} \quad \mapsto \quad (x, y, t)$$

Then t = tr(A).

computer calculation of Γ

computer calculation of Γ

sandpiles of Γ peaks

detail of sandpile

detail

computer calculation of Γ

integer curvatures

Curvatures a, b, c, d of four mutually tangent circles (a Descartes quadruple) satisfy

$$2(a^{2} + b^{2} + c^{2} + d^{2}) = (a + b + c + d)^{2}.$$

Given a, b, c, there are two possibilities d and d' satisfying

d + d' = 2(a + b + c).

Therefore

$$a, b, c, d \in \mathbb{Z} \implies \text{everything} \in \mathbb{Z}.$$

local-to-global

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan, Fuchs-Sanden):

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition modulo 24, and all sufficiently large integers satisfying this condition appear.

Bourgain-Fuchs: curvatures have positive density Bourgain-Kontorovich: density one occur

the language for circles: Möbius transformations

 $\mathrm{PSL}_2(\mathbb{C})$ acts on the extended complex plane, taking circle to circles:

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \quad \mapsto \quad \left(z \mapsto \frac{\alpha z + \gamma}{\beta z + \delta} \right)$$

the Apollonian group in $PSL_2(\mathbb{Z}[i])$

Schmidt arrangement of $\mathbb{Q}(i)$

orbit of real line under $PSL_2(\mathbb{Z}[i])$

Schmidt arrangement of $\mathbb{Q}(i)$

orbit of real line under $PSL_2(\mathbb{Z}[i])$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-2})$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-7})$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-6})$

orbit of real line under $PSL_2(\mathbb{Z}[\sqrt{-6}])$

Schmidt arrangement of $\mathbb{Q}(\sqrt{-15})$

circles = ideal classes of orders (which are trivial when extended to maximal ideal)

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \quad \longleftrightarrow \quad \beta \mathbb{Z} + \delta \mathbb{Z}$$

curvature of circle = conductor of the order

circles = ideal classes of orders (which are trivial when extended to maximal ideal)

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \quad \longleftrightarrow \quad \beta \mathbb{Z} + \delta \mathbb{Z}$$

curvature of circle = conductor of the order

Euclideanity = tangency (or topological) connectedness

Euclideanity = tangency (or topological) connectedness

2-part of the class group = maximal discrete extension of $PSL_2(\mathcal{O}_K)$

2-part of the class group = maximal discrete extension of $PSL_2(\mathcal{O}_K)$

Daniel Martin: other parts of the class group! AMS Meeting, 4pm on Saturday, Emerging Connections with Number Theory

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

continued Fractions: \mathbb{Q} in \mathbb{R}

 $LRL \cdots$ is the continued fraction expansion endpoints of pierced bubbles are good approximations:

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$$

Daniel Martin: continued fractions even when non-Euclidean! AMS Meeting, 4pm on Saturday, Emerging Connections with Number Theory lattices and circles from $PSL_2(\mathcal{O}_K)$

lattices and circles from quadratic odometers

radius t and center (x, y)

lattices and circles

theta functions

Given a lattice $\Lambda_{\tau} = \mathbb{Z} + \tau \mathbb{Z} \subset \mathbb{C}$, one asks for the *elliptic functions* for that lattice, i.e. meromorphic and periodic.

The solution is given by *theta functions*, e.g. the *Weierstrass* σ *-function*, which has an automorphy factor, i.e. for $\lambda \in \Lambda_{\tau}$,

$$\sigma(z+\lambda;\tau) = \sigma(z;\tau)\psi(\lambda)e^{\langle\lambda,z\rangle_{\tau}+\frac{1}{2}\langle\lambda,\lambda\rangle_{\tau}}$$

theta functions

For each peak of Γ , there exists a theta-like choice of odometer:

$$g(x + \lambda) = g(x) + x^T A \lambda + g(\lambda), \lambda \in \Lambda_A.$$

Associated to $\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$, one has a certain theta function whose q-valuation (taking the q-expansion) gives rise to this same odometer g.

This is work in progress...

thank you for your time and attention

All images were made with Sage Mathematics Software and Processing. Join us: ICERM Fall 2019: Illustrating Mathematics.