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Let us begin with a sandpile. . .



an Abelian sandpile
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an Abelian sandpile

1,000 grains



an Abelian sandpile

10,000 grains



an Abelian sandpile

100,000 grains



an Abelian sandpile

150,000 grains



an Abelian sandpile

250,000 grains



an Abelian sandpile

500,000 grains



an Abelian sandpile

detail



an Abelian sandpile

Bak, Tang, Wiesenfeld: self-organized criticality



the discrete Laplacian

acting on functions g :Z2→Z

∆g (x) =
∑

y∼x
(g (y)− g (x)).

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

odometer

7→

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 −4 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 −4 1 0

0 0 0 0 1 0 0

sandpile



the discrete Laplacian
acting on functions g :Z2→Z

∆g (x) =
∑

y∼x
(g (y)− g (x)).

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

bounded
odometer

7→

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 −4 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 −4 1 0

0 0 0 0 1 0 0

sandpile stabilizes to 0
in finite time



stablizable
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stabilizable
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stabilizable
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unstabilizable
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unstabilizable
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unstabilizable
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unstabilizable
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unstabilizable
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unstabilizable
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unstabilizable
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unstabilizable
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Laplacians of integral odometers
odometer 7→ sandpile

ax + b y + c 7→ 0 ax2+b y2+c xy 7→ 2a+2b


linear.mp4
Media File (video/mp4)


quadint.mp4
Media File (video/mp4)



Laplacians of rational odometers
odometer 7→ sandpile

bax+b y+cc 7→
�

periodic
avg = 0

�

bax2+ b y2+ c xyc 7→
�

periodic
avg = 2a+ 2b

�


linearrat.mp4
Media File (video/mp4)


quad2.mp4
Media File (video/mp4)


quadbelow.mp4
Media File (video/mp4)



superharmonic quadratic growths
Levine, Pegden, Smart

Let A∈ Sym2×2(R). We say an odometer g has quadratic growth A if

g (x) = x t Ax + o(|x|2)

and we say that A is superharmonic if there is an odometer g with quadratic growth A and

∆g ≤ 1.

Let Γ be the set of such superharmonic A, as a subset of R3:

A=
1
2

�

t − x y
y t + x

�

7→ (x, y, t )

Then t = tr(A).



computer calculation of Γ



computer calculation of Γ



sandpiles of Γ peaks



detail of sandpile

detail



computer calculation of Γ



Apollonian circle packing



Apollonian circle packing



Apollonian circle packing



Apollonian circle packing



Apollonian circle packing



Apollonian circle packing



integer curvatures

Curvatures a, b , c , d of four mutually tangent circles (a Descartes quadruple) satisfy

2(a2+ b 2+ c2+ d 2) = (a+ b + c + d )2.

Given a, b , c , there are two possibilities d and d ′ satisfying

d + d ′ = 2(a+ b + c).

Therefore
a, b , c , d ∈Z =⇒ everything ∈Z.



local-to-global

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan, Fuchs-Sanden):

In a primitive integral Apollonian circle packing, curvatures satisfy a congruence condition
modulo 24, and all sufficiently large integers satisfying this condition appear.

Bourgain-Fuchs: curvatures have positive density
Bourgain-Kontorovich: density one occur



the language for circles: Möbius transformations

PSL2(C) acts on the extended complex
plane, taking circle to circles:

�

α γ
β δ

�

7→
�

z 7→
αz + γ
βz +δ

�



the Apollonian group in PSL2(Z[i])

Base quadruple:
�

1 0
0 1

�

,
�

−1 i
0 1

�

,
�

0 −1
−1 i − 1

�

,
�

1 1− i
1 −i

�

.

Orbit under Apollonian group: A =
��

−1 2
−1 1

�

,
�

1 −1
2 −1

�

,
�

0 1
−1 0

�

,
�

1 1− i
0 −1

��

.



Schmidt arrangement ofQ(i)

orbit of real line under PSL2(Z[i])



Schmidt arrangement ofQ(i)

orbit of real line under PSL2(Z[i])



Schmidt arrangement ofQ(
p
−2)

orbit of real line under PSL2(Z[
p
−2])



Schmidt arrangement ofQ(
p
−7)

orbit of real line under PSL2(Z[
1+
p
−7

2 ])



Schmidt arrangement ofQ(
p
−11)

orbit of real line under PSL2(Z[
1+
p
−11

2 ])



Schmidt arrangement ofQ(
p
−6)

orbit of real line under PSL2(Z[
p
−6])



Schmidt arrangement ofQ(
p
−15)

orbit of real line under PSL2(Z[
1+
p
−15

2 ])



Illustrating the Arithmetic of Imaginary Quadratic Fields

tangency points = rational points of trivial class

α/β ∈K such that (α,β) is principal

size of the pencil = 1/N (β)



Illustrating the Arithmetic of Imaginary Quadratic Fields

circles = ideal classes of orders
(which are trivial when extended to maximal ideal)

�

α γ
β δ

�

←→ βZ+δZ

curvature of circle = conductor of the order



Illustrating the Arithmetic of Imaginary Quadratic Fields

circles = ideal classes of orders
(which are trivial when extended to maximal ideal)

�

α γ
β δ

�

←→ βZ+δZ

curvature of circle = conductor of the order



Illustrating the Arithmetic of Imaginary Quadratic Fields

Euclideanity = tangency (or topological) connectedness



Illustrating the Arithmetic of Imaginary Quadratic Fields

Euclideanity = tangency (or topological) connectedness



Illustrating the Arithmetic of Imaginary Quadratic Fields

2-part of the class group =maximal discrete extension of PSL2(OK )



Illustrating the Arithmetic of Imaginary Quadratic Fields

2-part of the class group =maximal discrete extension of PSL2(OK )



Illustrating the Arithmetic of Imaginary Quadratic Fields

Daniel Martin: other parts of the class group!
AMS Meeting, 4pm on Saturday, Emerging Connections with Number Theory



the Farey subdivision

0/1 1/1

a
b
<

a+ c
b + d

<
c
d



the Farey subdivision

0/1 1/11/2

a
b
<

a+ c
b + d

<
c
d



the Farey subdivision

0/1 1/11/21/3 2/3

a
b
<

a+ c
b + d

<
c
d



the Farey subdivision

0/1 1/11/21/3 2/31/4 2/5 3/5 3/4

a
b
<

a+ c
b + d

<
c
d



continued Fractions: Q in R

0/1 1/11/21/3 2/31/4 2/5 3/5 3/4

L

R
L

LRL · · · is the continued fraction expansion
endpoints of pierced bubbles are good approximations:

�

�

�

�

�

α−
p
q

�

�

�

�

�

<
1
q2



continued fractions: Q(i) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
tangency points of the ‘moves’ are good approximations
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continued fractions: Q(i) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
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continued fractions: Q(i) in C

Asmus Schmidt, 1975: continued fractions by zooming in through the regions
tangency points of the ‘moves’ are good approximations



continued fractions: Q(i) in C

Daniel Martin: continued fractions even when non-Euclidean!
AMS Meeting, 4pm on Saturday, Emerging Connections with Number Theory



lattices and circles from PSL2(OK)

ΛM
lattice
βZ+δZ

{v ∈Z2 : Av ∈Z2}

A
quadratic growth

1
2

�

t − x y
y t + x

�

88

&&

M
Möbius transformation

�

α γ
β δ

�

gg

wwCM
circle

M · bR

radius t and center (x, y)



lattices and circles from quadratic odometers

ΛA
lattice

{v ∈Z2 : Av ∈Z2}

βZ+δZ

A
quadratic growth

1
2

�

t − x y
y t + x

�

88

&&

M
Möbius transformation

�

α γ
β δ

�

gg

wwCA
circle

radius t and center (x, y)

M · bR



lattices and circles

ΛA=ΛM
lattice

{v ∈Z2 : Av ∈Z2}

βZ+δZ

A
quadratic growth

1
2

�

t − x y
y t + x

�

88

&&

M
Möbius transformation

�

α γ
β δ

�

gg

wwCA=CM
circle

radius t and center (x, y)

M · bR



theta functions

Given a lattice Λτ = Z+τZ⊂C, one asks
for the elliptic functions for that lattice, i.e.
meromorphic and periodic.

The solution is given by theta functions, e.g.
the Weierstrass σ -function, which has an au-
tomorphy factor, i.e. for λ ∈Λτ ,

σ(z +λ;τ) = σ(z;τ)ψ(λ)e 〈λ,z〉τ+
1
2 〈λ,λ〉τ .



theta functions

For each peak of Γ , there exists a theta-like
choice of odometer:

g (x +λ) = g (x)+ xT Aλ+ g (λ),λ ∈ΛA.

Associated to
�

α γ
β δ

�

, one has a certain

theta function whose q -valuation (taking
the q -expansion) gives rise to this same
odometer g .

This is work in progress. . .



thank you for your time and attention

All images were made with Sage Mathematics Software and Processing.
Join us: ICERM Fall 2019: Illustrating Mathematics.


