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Problem 1 (5 parts, 30 points): Consider the curve

r(t) =
〈
4 cos(t2), 3t2 + 1, 4 sin(t2)

〉
, 0 ≤ t <∞

a) (5 points) Find the arclength function s(t) giving arclength along r(t) from the point at t = 0 in
the direction of increasing t.

Solution. The arclength is the accumulation of the speed |r′(t)|, i.e.

s(t) =

∫ t

0

|r′(T )|dT.

(Here I’ve used variable T in the integral to prevent the confusion of writing
∫ t

0
|r′(t)|dt. If we write this,

we are using t two different ways. I generally forgave this on your exam. Your textbook uses u but we
have a similar variable, u, in the next part of Problem 1, so I chose T . You may use whatever you like.)

To compute this, we first find |r′(t)|:

r′(t) =
〈
−8t sin(t2), 6t, 8t cos(t2)

〉
.

|r′(t)| =
√

64t2 sin2(t2), 36t2, 64t2 cos2(t2)

=
√

100t2 since cos2(t2) + sin2(t2) = 1

= 10t

Note: When I take this square root, I choose the positive root because the length of any vector must
be non-negative. (In other words, the length formula always uses the positive square root.)

Then

s(t) =

∫ t

0

|r′(T )|dT

=

∫ t

0

10TdT

= 5T 2|t0
= 5t2

One of the most common errors in this problem was forgetting the limits of integration in the formula
for arclength. The observation which determines the limits is the following: the quantity s(t) is the length
along the curve from 0 to t.

s(t) = 5t2
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b) (5 points) Reparameterize r(t) with respect to the arclength from the point at t = 0 in the
direction of increasing t (i.e. the arclength of part (a)). Write your answer as u(s) and indicate the
domain of s.

Solution. Taking s = 5t2 from part (a), we solve for t:

s = 5t2

s/5 = t2√
s/5 = t

Plugging in t(s) =
√
s/5 to r(t), we obtain

u(s) = r(t(s)) = 〈4 cos
(s

5

)
,
3

5
s+ 1, 4 sin

(s
5

)
〉

To determine the domain: The functions u(s) and r(t) trace out the same curve in space. The domain
for r(t) is 0 ≤ t < ∞ (meaning the curve starts at t = 0). When t = 0, s = s(t) = s(0) = 0. As t
increases through positive numbers, s(t) = 5t2 increases through positive numbers also. So the domain
0 ≤ t < ∞ “translates into” a domain of 0 ≤ s < ∞. In other words, our new parameter s goes from 0
upwards as our old parameter t goes from 0 upwards, tracing out the same curve.

Some students said s must be non-negative because s = 5t2 is always non-negative. This is true, but
I would also like you to think about the solution method outlined in the last paragraph.

I did not accept any answer that said s =∞ was part of the domain. The symbol∞ does not denote
a number.

Bonus problem (no credit, but good to think about): What would it mean if I have given the domain
of t as −∞ < t <∞? Could you calculate arclength from the point t = −1, and could you reparametrize
with respect to arclength? If so, what would the domain of s be? Why is this fishy?

u(s) = 〈4 cos
(s

5

)
, 3
5s + 1, 4 sin

(s
5

)
〉

domain of s: 0 ≤ s <∞

c) (8 points, no justification necessary) Since r(t) and u(s) parametrize the same space curve,
we can consider a point P on that curve. What follows is a list of quantities which can be defined at the
point P on r(t) or on u(s). Circle those items which are necessarily the same for both r(t) and u(s) at
P .

velocity, binormal vector , unit tangent vector , tangent vector,

osculating circle , curvature , normal acceleration, tangential acceleration
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d) (10 points) Compute the curvature κ of either r(t) or u(s) at the point (0, 3π + 1,−4).

Solution. Many students chose the most difficult way to do this problem. More on that after two
efficient solutions are shown here.

Solution #1 We will use the formula

κ =
|T′(t)|
|r′(t)|

because we have already computed the denominator in part (a) of this Problem (it was 10t). To compute
the numerator, begin with r(t) computed from the first problem, and find its unit vector:

T(t) =
r(t)

|r(t)|
=

1

10t

〈
−8t sin(t2), 6t, 8t cos(t2)

〉
=

〈
−4

5
sin(t2),

3

5
,
4

5
cos(t2)

〉
.

The derivative of this vector isn’t so bad, it is

T′(t) =

〈
−8

5
t cos(t2), 0,−8

5
t sin(t2)

〉
.

Since cos2(t2) + sin2(t2) = 1, we find

|T′(t)| = 8

5
t

Then

κ =
|T′(t)|
|r′(t)|

=
8
5
t

10t
=

4

25
.

Solution #2 The method of the last solution can be made even shorter if you use u(s) instead.
There we know that |u′(s)| = 1 because that’s the purpose of the arclength reparametrisation: it makes
the speed of the ‘particle’ exactly 1 (for those who observed this instead of calculating it, I gave a bonus
point). The function u(s) is also easier to take derivatives of than r(t) (fractions aren’t as bad as they
look – constants behave well under differentiation – but products like t sin(t) mean costly product rule
computations). Furthermore, since u′(s) is a unit vector, T′(s) = u′′(s) for this function. We compute

u′(s) = 〈−4

5
sin(s/5), 3/5,

4

5
cos(s/5)〉

u′′(s) = 〈− 4

25
cos(s/5), 0,− 4

25
sin(s/5)〉

Finally,

κ =
|T′(t)|
|r′(t)|

= |u′′(s)| = 4

25

Important Remark. In both these cases, we never used the point! This curve is a helix (as you can see
from the formula for u(s)), up to some constants. And helices have constant curvature. So it’s perfectly
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alright that we never used the point. This observation should help you with one of the True/False
questions.

For those of you who used the formula

κ =
|r′(t)× r′′(t)|
|r′(t)|3

the day could still be saved if you plugged in the value for t at the given point (t =
√
π) before you did

all the cross product, etc. But the algebra in this case is still a big pain, and most of you who used this
method did not succeed in getting it down to the simplified final answer without making errors.

For future reference. I do not like to give difficult algebra on an exam, since it just results in
wasted time and mistakes that derail you before you can show that you understand the theory. If you
find yourself doing difficult algebra, it’s because you are doing the question the hard way. Stop, take a
breath, think about it, and pick a better approach. (Sadly, it seems that almost any question has a hard
way to tempt you down the wrong path. Beware!)

κ = 4
25

e) (2 points, no partial credit, no justification needed) What is the radius of the osculating
circle at the point (−4, 3π + 1, 0)? Circle the correct answer:

Remark. In this problem, I gave you full points if you put 1/κ where κ was whatever curvature you
got in the last part (since the radius is the inverse of the curvature).

1/60, 1/25, 3/25, 4/25, 1/5, 1/2, 1, 2, 5, 25/4 , 25/3, 25, 60, none of these.
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Problem 2 (24 points, no justification needed): Consider the following plane curves (a) through
(o) and the space curves (A) through (F).

a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n) o)
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A) B) C)

D) E) F)

In the table below, fill in the letter corresponding to the correct plane or space curve in each of the
empty boxes. It is possible that you may need to use some graphs repeatedly, and some not at all.

Remark. Different exams had different functions on them. I’ve expanded the table here to include
all those functions and more. It makes a good study tool: cover up the answers with another sheet of
paper, and then do the problem for all six functions shown below.
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viewed down viewed down viewed down graph of
x axis y axis z axis space curve

r(t) = 〈t, sin(t), cos(t)〉 k a d D

r(t) = 〈t, sin2(t), cos2(t)〉 i b e C

r(t) = 〈t, sin(2t), cos(t)〉 o a g A

r(t) = 〈t, sin2(t), cos(t)〉 m a e E

r(t) = 〈t, 2 sin(t), cos(t)〉 l a h B

r(t) = 〈t, sin(t2), cos(t2)〉 k c f F
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Problem 3 (14 points, no justification needed): Say whether the following statements are true
(T) or false (F). You may assume that all functions are defined everywhere and have derivatives of all
orders everywhere. You do not need to give reasons; this problem will be graded by answer only. You
will get +2 for each correct answer, 0 for each wrong answer, and +1 for each unanswered.

T F The osculating circle of a curve C at a point has the same unit tangent vector, normal vector, and
curvature as C at that point.

True. This is the definition.

T F If r(t) is a space curve (a curve in three dimensional space) with constant curvature κ, then r(t)
parameterizes part of a circle of radius 1/κ.

False. We saw in class and earlier in this exam that the helix is a curve with constant curvature.
But the helix is not a part of a circle.

T F If a particle moves at constant speed, then the velocity and acceleration vectors are orthogonal.

True. The tangential component of acceleration is v′ (derivative of speed), which is zero for a
particle of constant speed. So acceleration is entirely in the normal component, i.e. in the direction
of N which is perpendicular to v.

T F If a space curve lies entirely in a plane, then the binormal vector is always normal to that plane.

True If a curve lies in a plane, then the unit tangent T lies in that plane. The normal vector N
is also in that plane: since N measures the change in T, it lies in the plane T lies in. Since B is
perpendicular to T and N, it is perpendicular to the plane they generate.

T F To determine the velocity of a particle, it suffices to know its acceleration.

False. To obtain velocity from acceleration requires an antiderivative, which results in a constant
‘+c’. For example, r(t) = 〈t2 + t, 1〉 and r(t) = 〈t2 + 2t, 1〉 have different velocities, but the same
acceleration.

T F If the tangential component of acceleration for a particle is constantly 4, then that particle travels
on a path of constant curvature.

False. This is just nonsense. Knowing the tangential component (v′) is constant tells us something
about the speed the particle moves, but not about the direction it moves (including the curviness
of its path). For example, take any curve that is not of constant curvature (e.g. r(t) = 〈t, t2〉), and
reparametrise it to make the particle have speed 4t (actually working this out is difficult, but in
theory it is possible to reparametrise any curve to have any speed).

T F If a particle with position function r(t) experiences no acceleration, then its arclength function s(t)
is linear in t.

True If the particle experiences no acceleration, then it is moving with constant velocity. Arclength
s(t) is the distance travelled along the curve in time t. If it has constant speed v, that distance is
increasing at a constant rate, i.e. s(t) is linear, or in other words s(t) = vt + c for some constant
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c depending on where you are measuring from. Here’s another way to think of it: If r(t) has zero
acceleration, then r′′(t) = 0. Antidifferentiating, we find that r′(t) must be a constant. Hence
|r′(t)| is equal to some constant k. Calculating s(t) as an integral of this function (by the arclength
formula), we find s(t) = kt+c for some constant c (depending on where we are measuring arclength
from).
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Problem 4 (10 points): Show that for a space curve, dB
ds

is perpendicular to T.

Proof #1
To check that dB

ds
is perpendicular to T, it suffices to check that their dot product is zero. In other

words, we will have proven the claim if we show that dB
ds
·T = 0.

Since B = T×N be definition, we have

dB

ds
=
d(T×N)

ds

=
dT

ds
×N + T× N

ds
by cross product rule for differentiation

Taking the dot product with T on both sides, we have

dB

ds
·T =

(
dT

ds
×N + T× N

ds

)
·T

=

(
dT

ds
×N

)
·T +

(
T× N

ds

)
·T since dot product distributes over sum

We will show that both these terms vanish (are zero).
First, we show the term

(
T× dN

ds

)
·T vanishes, as follows. A cross product a× b is perpendicular to

the two input vectors a and b. Here, T× dN
ds

is perpendicular to T. Therefore their dot product vanishes.
Second, we show the term

(
dT
ds
×N

)
· T vanishes, as follows. Recall that the curvature vector is dT

ds

and that this vector is equal to κN. Hence the term becomes (κN×N) · T. A cross product of any
vector with another parallel vector is zero. But N and κN are parallel. So κN×N is zero. Finally, the
dot product of the zero vector with any vector is zero. So the term vanishes.

Since both terms vanish, we have shown

dB

ds
·T =

(
dT

ds
×N

)
·T +

(
T× N

ds

)
·T

= 0 + 0

= 0

Remark on the proof. This is the proof that easiest to find, in the sense that the method of proof
is direct: try to compute dT

ds
·T and see if you get 0. The next proof is harder to find, but shorter.

Proof #2 (bonus for this one)
A cross product is perpendicular to the two input vectors. Since B = T × N, we find that B is

perpendicular to T and N. This has two consequences. The first is that since perpendicular vectors have
zero dot product,

10



Math 317 M1B, October 8th, 2010 page 11 of 7 Name:

0 = B ·T (1)

The next consequence is as follows. The term dT
ds

is the curvature vector, which is equal to κN. Since
N and B are perpendicular (from the first paragraph), it follows that dT

ds
and B are perpendicular. Thus

B · dT
ds

= 0 (2)

Differentiating (1), we find that

0 =
d(B ·T)

ds

=
dB

ds
·T + B · dT

ds
by dot product rule of differentiation

=
dB

ds
·T by (2)

From the vanishing of the dot product, we find that dB
ds

is perpendicular to T.
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