Name ______Student Number _____

No books, notes or calculators are allowed.

The following formulas may be useful:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \quad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \quad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$
$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$\kappa(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

Problem A Sketch a graph of the space curve $\mathbf{r}(t) = \langle \cos(t^3 + t), \sin(t^3 + t), 5 \rangle$. Indicate the following things on your graph:

- the directional arrow for the curve (direction of increasing t)
- the point P = (1, 0, 5)
- the point Q corresponding to $t^3 + t = \pi$
- the vectors \mathbf{T} , \mathbf{N} and \mathbf{B} at Q.

Problem B Say whether the following statements are true (\mathbf{T}) or false (\mathbf{F}) . You may assume that all functions and vector fields are defined everywhere and have derivatives of all orders everywhere. You do not need to give reasons; this problem will be graded by answer only. You will get +1 for each correct answer, -1 for each wrong answer, and 0 for each no answer.

- 1. The curve with vector equation $\mathbf{r}(t) = \langle t^3, 2t^3, 3t^3 \rangle$ is a line.
- 2. If $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are vector valued functions, then

$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}'(t).$$

- 3. The circle has constant curvature.
- 4. The integral of a vector function is obtained by integrating each component function.
- 5. If a vector function $\mathbf{r}(t)$ is such that $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are always perpendicular, then $\mathbf{r}(t)$ is constant.

For good reviewing, give reasons for your choices above, and if you said false, can you correct the statement to make it true?

Problem C Consider the curve with the parameterization

$$\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t\mathbf{k}$$

for $-\infty < t < \infty$.

- 1. Compute the curvature $\kappa(t)$ as a function of t.
- 2. What is the limit of $\kappa(t)$ as t approaches infinity? What is the limit of $\kappa(t)$ as t approaches minus infinity?
- 3. For what value of t is $\kappa(t)$ maximum?

Problem D

1. Find the length of the curve

$$\mathbf{r}(t) = e^t \mathbf{i} + e^t \sin t \mathbf{j} + e^t \cos t \mathbf{k}$$

from t = 0 to t = T where T is any positive number.

2. Reparameterize $\mathbf{r}(t)$ with respect to arclength measured from the point where t = 0 in the direction of increasing t.

Problem E

Suppose that a particle of mass m with position vector $\mathbf{r}(t)$ is acted on by a central force

$$\mathbf{F} = f(r)\mathbf{r}$$
, where $r = |\mathbf{r}|$.

Define the *potential energy* U(r) to be the antiderivative:

$$U(r) = -\int rf(r)\,dr$$

and define the kinetic energy K(t) to be

$$K = \frac{1}{2}m|\mathbf{v}|^2.$$

Show that the total energy E = K + U is conserved, i.e. show that K + U is a constant with respect to t. (Hint: In order to compute dr/dt, write r as $\sqrt{\mathbf{r} \cdot \mathbf{r}}$.)

Problem F Select the correct answer; you do not need to show work; **no partial credit will be** given.

Let $\mathbf{r}(t)$ be a vector valued function. Let \mathbf{r}' , \mathbf{r}'' , and \mathbf{r}''' denote $\frac{d\mathbf{r}}{dt}$, $\frac{d^2\mathbf{r}}{dt^2}$, and $\frac{d^3\mathbf{r}}{dt^3}$ respectively. Then $\frac{d}{dt} [(\mathbf{r} \times \mathbf{r}') \cdot \mathbf{r}'']$ is given by

- 1. $(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r}'''$
- 2. $(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r} + (\mathbf{r} \times \mathbf{r}') \cdot \mathbf{r}'''$
- 3. $\mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}''')$
- 4. **0**
- 5. None of the above.

Problem G Suppose that the position vector $\mathbf{r}(t)$ of an object in motion is in the same direction as the acceleration vector $\mathbf{a}(t)$, in other words, there is a function f(t) such that

$$\mathbf{a}(t) = f(t)\mathbf{r}(t).$$

Let $\mathbf{h}(t)$ be the cross product of the position vector and the velocity:

$$\mathbf{h}(t) = \mathbf{r}(t) \times \mathbf{v}(t).$$

Show that $\mathbf{h}(t)$ is a constant vector.