Math 317 - Hwk 9 solutions

4. (a) curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ 0 & \cos xz & -\sin xy \end{vmatrix} = (-x\cos xy + x\sin xz)\mathbf{i} - (-y\cos xy - 0)\mathbf{j} + (-z\sin xz - 0)\mathbf{k}$$

$$= x(\sin xz - \cos xy)\mathbf{i} + y\cos xy\mathbf{j} - z\sin xz\mathbf{k}$$

(b) div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (0) + \frac{\partial}{\partial y} (\cos xz) + \frac{\partial}{\partial z} (-\sin xy) = 0 + 0 + 0 = 0$$

8. (a)
$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ e^x & e^{xy} & e^{xyz} \end{vmatrix} = (xze^{xyz} - 0)\mathbf{i} - (yze^{xyz} - 0)\mathbf{j} + (ye^{xy} - 0)\mathbf{k}$$
$$= \langle xze^{xyz}, -yze^{xyz}, ye^{xy} \rangle$$

(b) div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (e^x) + \frac{\partial}{\partial y} (e^{xy}) + \frac{\partial}{\partial z} (e^{xyz}) = e^x + xe^{xy} + xye^{xyz}$$

9. If the vector field is $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$, then we know R = 0. In addition, the x-component of each vector of \mathbf{F} is 0, so

$$P=0$$
, hence $\frac{\partial P}{\partial x}=\frac{\partial P}{\partial y}=\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}=\frac{\partial R}{\partial y}=\frac{\partial R}{\partial z}=0$. Q decreases as y increases, so $\frac{\partial Q}{\partial y}<0$, but Q doesn't change

in the x- or z-directions, so
$$\frac{\partial Q}{\partial x} = \frac{\partial Q}{\partial z} = 0$$
.

(a) div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0 + \frac{\partial Q}{\partial y} + 0 < 0$$

(b) curl
$$\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k} = (0 - 0)\mathbf{i} + (0 - 0)\mathbf{j} + (0 - 0)\mathbf{k} = \mathbf{0}$$

10. If the vector field is $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$, then we know R = 0. In addition, P and Q don't vary in the z-direction, so

$$\frac{\partial R}{\partial x} = \frac{\partial R}{\partial y} = \frac{\partial R}{\partial z} = \frac{\partial P}{\partial z} = \frac{\partial Q}{\partial z} = 0$$
. As x increases, the x -component of each vector of \mathbf{F} increases while the y -component

remains constant, so $\frac{\partial P}{\partial x} > 0$ and $\frac{\partial Q}{\partial x} = 0$. Similarly, as y increases, the y-component of each vector increases while the

$$x$$
-component remains constant, so $\frac{\partial Q}{\partial y}>0$ and $\frac{\partial P}{\partial y}=0$.

(a) div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + 0 > 0$$

(b) curl
$$\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k} = (0 - 0)\mathbf{i} + (0 - 0)\mathbf{j} + (0 - 0)\mathbf{k} = \mathbf{0}$$

11. If the vector field is $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$, then we know R = 0. In addition, the y-component of each vector of \mathbf{F} is 0, so

$$Q=0$$
, hence $\frac{\partial Q}{\partial x}=\frac{\partial Q}{\partial y}=\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial x}=\frac{\partial R}{\partial y}=\frac{\partial R}{\partial z}=0$. P increases as y increases, so $\frac{\partial P}{\partial y}>0$, but P doesn't change in

the x- or z-directions, so $\frac{\partial P}{\partial x} = \frac{\partial P}{\partial z} = 0$.

(a) div
$$\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0 + 0 + 0 = 0$$

(b) curl
$$\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k} = (0 - 0)\mathbf{i} + (0 - 0)\mathbf{j} + \left(0 - \frac{\partial P}{\partial y}\right)\mathbf{k} = -\frac{\partial P}{\partial y}\mathbf{k}$$

Since $\frac{\partial P}{\partial y} > 0$, $-\frac{\partial P}{\partial y}$ **k** is a vector pointing in the negative z-direction.

- 12. (a) curl $f = \nabla \times f$ is meaningless because f is a scalar field.
 - (b) grad f is a vector field.
 - (c) div F is a scalar field.
 - (d) $\operatorname{curl}(\operatorname{grad} f)$ is a vector field.
 - (e) grad F is meaningless because F is not a scalar field.
 - (f) grad(div F) is a vector field.
 - (g) $\operatorname{div}(\operatorname{grad} f)$ is a scalar field.
 - (h) grad(div f) is meaningless because f is a scalar field.
 - (i) curl(curl F) is a vector field.
 - div(div F) is meaningless because div F is a scalar field.
 - (k) $(\operatorname{grad} f) \times (\operatorname{div} \mathbf{F})$ is meaningless because $\operatorname{div} \mathbf{F}$ is a scalar field.
 - div(curl(grad f)) is a scalar field.

18. curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y \cos xy & x \cos xy & -\sin z \end{vmatrix}$$

$$= (0 - 0)\mathbf{i} - (0 - 0)\mathbf{j} + [(-xy\sin xy + \cos xy) - (-xy\sin xy + \cos xy)]\mathbf{k} = \mathbf{0}$$

F is defined on all of \mathbb{R}^3 , and the partial derivatives of the component functions are continuous, so **F** is conservative. Thus there exists a function f such that $\nabla f = \mathbf{F}$. Then $f_x(x, y, z) = y \cos xy$ implies $f(x, y, z) = \sin xy + g(y, z)$ \Rightarrow

$$f_y(x, y, z) = x \cos xy + g_y(y, z)$$
. But $f_y(x, y, z) = x \cos xy$, so $g(y, z) = h(z)$ and $f(x, y, z) = \sin xy + h(z)$.

Thus
$$f_z(x, y, z) = h'(z)$$
 but $f_z(x, y, z) = -\sin z$ so $h(z) = \cos z + K$ and a potential function for **F** is $f(x, y, z) = \sin xy + \cos z + K$.

Math 317 - Hwk 9 solutions

- 20. No. Assume there is such a G. Then $\operatorname{div}(\operatorname{curl} \mathbf{G}) = yz 2yz + 2yz = yz \neq 0$ which contradicts Theorem 11.
- 22. div $\mathbf{F} = \frac{\partial (f(y,z))}{\partial x} + \frac{\partial (g(x,z))}{\partial y} + \frac{\partial (h(x,y))}{\partial z} = \mathbf{0}$ so \mathbf{F} is incompressible.

For Exercises 23–29, let $\mathbf{F}(x, y, z) = P_1 \mathbf{i} + Q_1 \mathbf{j} + R_1 \mathbf{k}$ and $\mathbf{G}(x, y, z) = P_2 \mathbf{i} + Q_2 \mathbf{j} + R_2 \mathbf{k}$.