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= div(P,. Q1. R1) + div(Ps, @2, R;) = divF + divG
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23. div(F+ G) =div(P, + P». Q1 + Q2. Ry + Ry) =

k= curl(F + G)

2. div(fF) = div(f (P Q. R)) = div(f Py, fQ1. fR) = 2LE) 4 2U) | JUR)

dy 9z
P, af a1 af AR, af
=(f3 +P13 )+(f + 1 ) (f s + &)
P 3@1 OR, 95 9f 3f
f( By + 84) (P, @1, Fa)- <3 "By D > fdivF+F-Vf

2. curl(fF) — {B(le) B(le}] [B(fPi) a(gRl]]-iJf{a(éSl} BigyPi)]
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8/8x 8/dy 8/8=

Q1 R a|P R 8|1 H &
7. div(FXxG)=V-(FxG)=| PA @ R |=— -z -
T Q@2 Ra P, R, P Q2
P (2 Ba
AR, an OR, 90> AR, aP 8Ry aP,
|:Q1 + Ra Qz — R O ] |:P1 By + Ry — By P oy By By }
a b2l a
+[ E?Hc;a S-rn_o Pz]

. Ry Q1 aBF dR, 1 anR
—[Pz(a—y‘ 34) ‘?’*( E)“LRZ(E_Q_E,)]
dR:  3Q: aP; 9R» dQ. IPF:
_[Pl(ay - 32) Ql( 3$)+Rl(3x _B_y):|

=G -curlF — F-curl G

28. div(Vf x Vg)=Vg-curl (Vf) —Vf-curl(Vg) [byExercise27] =0 [by Theorem 3]
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i j Kk
2. curl(curl F) =V % (VxF) = o/8x d/0y 9/0z

IRy — 0Q1/8z 0P /0z —ORy/0x 8Q1/0x — P /0y

dz0y dz2 dx2 dxdy

_ (& &ph  &Ph N PRi\., (R I 2 N ST
T\ ydx dy? dz2 dz0x

(PR PR &R 01\
dxdz dx? dy? Aydz

Now let’s consider grad(div F') — V> F and compare with the above.
(Note that V*F is defined on page 1102 [ ET 1066])

+

dydx dy? dydz It

grad(divF) — V°F = K

dx? dxdy  Ox8= dzdx  8z0y az?

&p  &p PR\, (0 80 T\ .
_[( Jx? + dy? + 92 ]! dx? + dy? + 922 )Y

9* Ry R * Ry
+(3.r2 + ay? * az2 )k:|

_ (& &R &R A\, (PA A PR I ).
T\ dxdy  Hxdz dy? dz2 dydxr  Oydz dx2 dz2

e SR A T B 8% Ry B 8% Ry K
dz0x  Ozdy dx? ay?

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and

comparing, we have curl curl F = grad div F — V*F as desired.

Ror=zityjt+zk = r=|r|=+22+y*+ 22, 50

_r _ x - y . z
F= re (_rz + yz + zz)wz 1+ (1.2 + yz + 32};;,'2 J+ (xz +yz + Z’.!}_‘pf’.! k
i x =(I2+y2+zz)_px2=r2_px2_Si.ﬂljlaﬂy,
S (x2+y2+22:}p;’2 ($2+y2+22:}1 +p/2 rP+2
N R ! YR N S et Zop
ay (I2 + yﬂ + zZ}p,ﬂ re+2 8z (I'.! + yZ + Z'.!J_pf".! ret+2
djVsz‘Fzrz_pxz rz—pyz rg—pzz_ﬂrg—pxz—pyg—pzz

rp+2 re+2 ret+2 re+2

_ 3r® —p(2® +y* + 2%) _ 3 —pr? _3—p
= P+ 2 T eE+2 T pp

Consequently, if p = 3 we have divF = 0.

ap & R ap & R ap & R
) Q1+ l)i—i—( Ly 1 1). ( A Q1+ 1

)4
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33. By (13), §,, f(Vg) -nds = [[, div(fVg)dA = [[,[fdiv(Vg) + Vg - Vf] dA by Exercise 25. But div(Vg) = V.

Hence [[, fVgdA = §_ f(Vg)-nds— [[,Vg-VfdA.

34. By Exercise 33, [[, fV2gdA = §_ f(Vg) -nds — [[, Vg- VfdAand
ffD gVifdA = §c g(Vf) -nds— ffn Vf-VgdA. Hence
I (V29— gVif)dA=§_[f(Vg) -n—g(Vf)-nlds+ [[,(Vf-Vg—Vg-Vf)dA=§_[fVg—gVf] -nds

39. For any continuous function f on R?, define a vector field G(x, . z) = (g(x, v, z),0,0) where g(=, y. z) = [ f (t.y. z) dt.
J a a d
Thendiv G = — (g(z, 3. 2)) + — (0) + — (0) = — J; f(t.y.z)dt = f(x,y, z) by the Fundamental Theorem of
dz dy dz Oz
Calculus. Thus every continuous function f on B is the divergence of some vector field.

Lr(uwv)=(utov)i+(3—v)j+(1+4u+5v)k=1(0.31)+u (1,0 4)+v(1,—1, 5) FromExample 3, we recognize
this as a vector equation of a plane through the pomt (0, 3, 1) and containing vectors a = (1,0,4) and b = {1, —1.5). If we
i jk
wish to find a more conventional equation for the plane, a normal vector fo the planeisa xb=|1 0 4|=4i—j—k
1-1 35
and an equation of the plane 1s 4(x — 0) — (y —3) —(z — 1) =0o0rde —y —z = —4
6. r(s,t) = ssin2ti+ s j + s cos 2t k, so the corresponding parametric equations for the surface are = = ssin2t, y = 5%,
z = s cos 2t. For any point (. y, z) on the surface, we have z* + z* = s sin® 2t + s cos® 2t = s = y_Since no
restrictions are placed on the parameters, the surface is y = =* + =”, which we recognize as a circular paraboloid whose axis
is the y-axis.

8. r(u,v}={:u—|—u__u2,v2>, —1<u<l, —1<v<1.

v constant

The surface has parametric equations = = u + v, y = u?, z = v°,

—1<u<1,—1<v<1 Ifu=uisconstant, y = u} = constant, so
the corresponding prid curves are the curves parallel to the xz-plane. If z 05
v = vy is constant, = = v§ = constant, so the corresponding prid curves

are the curves parallel fo the zy-plane.

13. r(u, v) = ucosvi+ usinvj + v k. The parametric equations for the surface are » = v cos v, y = usinv, = = v. We look at
the grid curves first; if we fix v, then » and y parametrize a straight line in the plane » = v which intersects the z-axis. If u 1s
held constant, the projection onto the xy-plane is circular; with = = v, each prid curve is a helix. The surface is a spiraling
ramp, graph L
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14. r(u, v) = wcosvi+ usinvj+ sinw k. The corresponding parametric equations for the surface are * = ucosv, y = usinw,
z =sinu, —7 < u < 7. If u = wuy is held constant, then = = wg cos v, y = wp sin v so each grid curve is a circle of radius
|ug| in the horizontal plane = = sinug. If v = vy 1s constant, then x = v cos vy, y = usinvg = y = (tanwvg)z, so the
grid curves lie in vertical planes y = kx through the z-axis. In fact, since = and y are constant multiples of « z =sinu,
each of these fraces is a sine wave. The surface is graph L.

15. r(u, v) = sinvi+ cos u sin 2v j 4 sin u sin 2v k. Parametric equations for the surface are » = sinv, y = cosu sin 2v,
z = sinu sin 2v. If v = vy 1s fixed, then = = sin vo 15 constant, and y = (sin 2vo) cos v and z = (sin 2ve) sin v describe a
circle of radius |sin 2ve|, so each corresponding grid curve is a circle contained i the vertical plane = = sin vo parallel to the
yz-plane. The only possible surface is graph IT. The grid curves we see running lengthwise along the surface correspond to
holding u constant, in which case y = (cosug) sin2v, z = (sinwg) sin2v = = = (tanug)y, so each gnd curve liesm a
plane = = ky that ncludes the x-axis.

16. = = (1 — u)(3 + cosv) cosdmu, y = (1 — u)(3 + cos v} sindwu, z = 3u + (1 — u) sinv. These equations correspond to
graph VI: when « = 0, then x = 3 + cos v, y = 0, and = = sin v, which are equations of a circle with radius 1 in the zz-plane
centered at (3,0,0). When v = 1 thenz = 2 + 1 cosv,y = 0,and = = 2 + 1 sinv, which are equations of a circle with
radius 1 in the x>-plane centered at (2,0, 2). When » = 1, then = = y = 0 and = = 3, giving the topmost point shown in the
graph. Tlus suggests that the grid curves with u constant are the vertically oriented cireles visible on the surface. The spiralling
grid curves correspond to keeping v constant.

17. = = cos® u cos® v, y = sin® u cos® v, » = sin® v. If v = vy 15 held constant then > = sin® vy 1s constant, so the
corresponding prid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this
surface are neither circles nor straight lines, so graph Il 1s the only possibality. (In fact, the horizontal grid curves here are
members of the family x = a cos® v, y = a sin® u and are called astroids.) The vertical grnid curves we see on the surface
correspond to 2 = w0 held constant, as then we have = = cos® uo cos® v, y = sin® uo cos® v so the corresponding grid curve
lies in the vertical plane y = (tan® ug )z through the z-axis.

18. x = (1 — |u|) cos v, y = (1 — |u|) sinv, z = w. Then z® + 3 = (1 — |u)? cos® v + (1 — |u|)* sin® v = (1 — |u|)?, so if u
1s held constant, each grid curve is a circle of radius (1 — |w|) in the horizontal plane = = u. The praph then must be graph VL
If v is held constant, so v = vo, we have x = (1 — |u|) coswp and y = (1 — |u|) sinve. Then y = (tan ve )z, so the gnd
curves we see runmng vertically along the surface in the planes y = &z correspond to keeping v constant.

19. From Example 3, parametric equations for the plane through the pomnt (1, 2, —3) that contains the vectorsa = (1,1, —1} and
b={(1,—-11)arez=14+u(l)+v(l)=14+u+t+v,y=2+u(l)+v(—-1)=24+u—v,
z=—34+u(-1)+v(l)=—3—u4uv

2 x=4—y*—2:% y=y, z = = where y* + 227 < 4 since x > 0. Then the associated vector equation is
r(y,z)=4—y* —2:})it+yj+:zk
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24,

26.

30.

cr(w,v) =wlit+ o jtuvk = r(1,1)=(1,1,1).

In spherical coordinates, parametric equations are x = 4sin @ cos 8, y = 4sin ¢ sin @, z = 4 cos ¢. The mtersection of the
sphere with the plane = = 2 corresponds to z = 4cos =2 = coso =% = ¢ = Z By symmetry, the intersection of
the sphere with the plane z = —2 corresponds to ¢ = = — Z = 2% _ Thus the surface is described by 0 < 6 < 27,

T 2T
ISO=T-

Using « and y as the parameters, * = z, y = y, z = x + 3 where 0 < z® + 3® < 1. Also, since the plane infersects the
cylinder in an ellipse, the surface is a planar ellipse in the plane = = = 4 3. Thus, parametrizing with respect to s and 8, we
have x = scosf,y = ssinf, 2 =3+ scosf where 0 < s < land 0 < # < 27

Letting & be the angle of rotation about the y-axis, we
have the parametrization = = (4y”> — y*) cos 8, y =1,

z= (4" —y*)sing, —2<y<2 0<6<2m

r, = 2ui+vkandr, = 2vj+ uk, 50 a normal vector to the
surface at the point (1,1, 1) is

ro(l.1) xr (1. 1) = (2i+k) x (2j4+ k) =-21—-2j+ 41k
Thus an equation of the tangent plane at the point (1,1, 1) is
—2z—1)—2(y—1)4+4(z—1)=00rz+y—2==0.
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