CONCEPT CHECK

- What is a vector field? Give three examples that have physical meaning.
- 2. (a) What is a conservative vector field?
 - (b) What is a potential function?
- **3.** (a) Write the definition of the line integral of a scalar function *f* along a smooth curve *C* with respect to arc length.
 - (b) How do you evaluate such a line integral?
 - (c) Write expressions for the mass and center of mass of a thin wire shaped like a curve C if the wire has linear density function $\rho(x, y)$.
 - (d) Write the definitions of the line integrals along *C* of a scalar function *f* with respect to *x*, *y*, and *z*.
 - (e) How do you evaluate these line integrals?
- **4.** (a) Define the line integral of a vector field **F** along a smooth curve *C* given by a vector function **r**(*t*).
 - (b) If **F** is a force field, what does this line integral represent?
 - (c) If F = ⟨P, Q, R⟩, what is the connection between the line integral of F and the line integrals of the component functions P, Q, and R?
- 5. State the Fundamental Theorem for Line Integrals.
- **6.** (a) What does it mean to say that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path?
 - (b) If you know that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path, what can you say about \mathbf{F} ?
- 7. State Green's Theorem.
- **8.** Write expressions for the area enclosed by a curve *C* in terms of line integrals around *C*.
- **9.** Suppose **F** is a vector field on \mathbb{R}^3 .
 - (a) Define curl F.
 - (b) Define div F.

- (c) If F is a velocity field in fluid flow, what are the physical interpretations of curl F and div F?
- **10.** If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$, how do you test to determine whether \mathbf{F} is conservative? What if \mathbf{F} is a vector field on \mathbb{R}^3 ?
- II. (a) What is a parametric surface? What are its grid curves?
 - (b) Write an expression for the area of a parametric surface.
 - (c) What is the area of a surface given by an equation z = g(x, y)?
- 12. (a) Write the definition of the surface integral of a scalar function f over a surface S.
 - (b) How do you evaluate such an integral if S is a parametric surface given by a vector function $\mathbf{r}(u, v)$?
 - (c) What if S is given by an equation z = g(x, y)?
 - (d) If a thin sheet has the shape of a surface S, and the density at (x, y, z) is $\rho(x, y, z)$, write expressions for the mass and center of mass of the sheet.
- **13.** (a) What is an oriented surface? Give an example of a non-orientable surface.
 - (b) Define the surface integral (or flux) of a vector field **F** over an oriented surface *S* with unit normal vector **n**.
 - (c) How do you evaluate such an integral if S is a parametric surface given by a vector function $\mathbf{r}(u, v)$?
 - (d) What if S is given by an equation z = g(x, y)?
- 14. State Stokes' Theorem.
- 15. State the Divergence Theorem.
- 16. In what ways are the Fundamental Theorem for Line Integrals, Green's Theorem, Stokes' Theorem, and the Divergence Theorem similar?

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

- 1. If **F** is a vector field, then div **F** is a vector field.
- 2. If **F** is a vector field, then curl **F** is a vector field.
- **3.** If f has continuous partial derivatives of all orders on \mathbb{R}^3 , then $\operatorname{div}(\operatorname{curl} \nabla f) = 0$.
- **4.** If f has continuous partial derivatives on \mathbb{R}^3 and C is any circle, then $\int_C \nabla f \cdot d\mathbf{r} = 0$.
- **5.** If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ and $P_y = Q_x$ in an open region D, then \mathbf{F} is conservative.
- **6.** $\int_{-C} f(x, y) ds = -\int_{C} f(x, y) ds$
- **7.** If *S* is a sphere and **F** is a constant vector field, then $\iint_S \mathbf{F} \cdot d\mathbf{S} = 0$.
- 8. There is a vector field F such that

$$\operatorname{curl} \mathbf{F} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}$$

EXERCISES

- **I.** A vector field \mathbf{F} , a curve C, and a point P are shown.
 - (a) Is $\int_C \mathbf{F} \cdot d\mathbf{r}$ positive, negative, or zero? Explain.
 - (b) Is div $\mathbf{F}(P)$ positive, negative, or zero? Explain.

- 2-9 Evaluate the line integral.
- 2. $\int_C x \, ds$, C is the arc of the parabola $y = x^2$ from (0, 0) to (1, 1)
- 3. $\int_C yz \cos x \, ds$, $C: x = t, y = 3 \cos t, z = 3 \sin t, 0 \le t \le \pi$
- **4.** $\int_C y \, dx + (x + y^2) \, dy$, C is the ellipse $4x^2 + 9y^2 = 36$ with counterclockwise orientation
- **5.** $\int_C y^3 dx + x^2 dy$, C is the arc of the parabola $x = 1 y^2$ from (0, -1) to (0, 1)
- **6.** $\int_C \sqrt{xy} \, dx + e^y \, dy + xz \, dz,$ C is given by $\mathbf{r}(t) = t^4 \, \mathbf{i} + t^2 \, \mathbf{j} + t^3 \, \mathbf{k}, \, 0 \le t \le 1$
- 7. $\int_C xy \, dx + y^2 \, dy + yz \, dz$, C is the line segment from (1, 0, -1), to (3, 4, 2)
- **8.** $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = xy \mathbf{i} + x^2 \mathbf{j}$ and C is given by $\mathbf{r}(t) = \sin t \, \mathbf{i} + (1+t) \, \mathbf{j}, \, 0 \le t \le \pi$
- **9.** $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = e^z \mathbf{i} + xz \mathbf{j} + (x + y) \mathbf{k}$ and C is given by $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j} - t \mathbf{k}, 0 \le t \le 1$
- 10. Find the work done by the force field $\mathbf{F}(x, y, z) = z \mathbf{i} + x \mathbf{j} + y \mathbf{k}$ in moving a particle from the point (3, 0, 0) to the point $(0, \pi/2, 3)$ along (a) a straight line
 - (b) the helix $x = 3 \cos t$, y = t, $z = 3 \sin t$

11-12 Show that F is a conservative vector field. Then find a function f such that $\mathbf{F} = \nabla f$.

- **II.** $\mathbf{F}(x, y) = (1 + xy)e^{xy}\mathbf{i} + (e^y + x^2e^{xy})\mathbf{j}$
- 12. $\mathbf{F}(x, y, z) = \sin y \mathbf{i} + x \cos y \mathbf{j} \sin z \mathbf{k}$

13-14 Show that **F** is conservative and use this fact to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ along the given curve.

- **13.** $\mathbf{F}(x, y) = (4x^3y^2 2xy^3)\mathbf{i} + (2x^4y 3x^2y^2 + 4y^3)\mathbf{j}$ C: $\mathbf{r}(t) = (t + \sin \pi t) \mathbf{i} + (2t + \cos \pi t) \mathbf{j}, \ 0 \le t \le 1$
- **14.** $\mathbf{F}(x, y, z) = e^{y} \mathbf{i} + (xe^{y} + e^{z}) \mathbf{j} + ye^{z} \mathbf{k}$, C is the line segment from (0, 2, 0) to (4, 0, 3)
- 15. Verify that Green's Theorem is true for the line integral $\int_C xy^2 dx - x^2y dy$, where C consists of the parabola $y = x^2$ from (-1, 1) to (1, 1) and the line segment from (1, 1) to (-1, 1).
- **16.** Use Green's Theorem to evaluate $\int_C \sqrt{1+x^3} dx + 2xy dy$, where C is the triangle with vertices (0, 0), (1, 0), and (1, 3).
- 17. Use Green's Theorem to evaluate $\int_C x^2 y \, dx xy^2 \, dy$, where C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.
- 18. Find curl F and div F if

$$\mathbf{F}(x, y, z) = e^{-x} \sin y \,\mathbf{i} + e^{-y} \sin z \,\mathbf{j} + e^{-z} \sin x \,\mathbf{k}$$

- 19. Show that there is no vector field G such that $\operatorname{curl} \mathbf{G} = 2x \,\mathbf{i} + 3yz \,\mathbf{j} - xz^2 \,\mathbf{k}.$
- 20. Show that, under conditions to be stated on the vector fields F

$$\operatorname{curl}(\mathbf{F} \times \mathbf{G}) = \mathbf{F} \operatorname{div} \mathbf{G} - \mathbf{G} \operatorname{div} \mathbf{F} + (\mathbf{G} \cdot \nabla)\mathbf{F} - (\mathbf{F} \cdot \nabla)\mathbf{G}$$

- **21.** If C is any piecewise-smooth simple closed plane curve and f and g are differentiable functions, show that $\int_C f(x) \, dx + g(y) \, dy = 0.$
- **22.** If f and g are twice differentiable functions, show that

$$\nabla^2(fg) = f \nabla^2 g + g \nabla^2 f + 2 \nabla f \cdot \nabla g$$

- **23.** If f is a harmonic function, that is, $\nabla^2 f = 0$, show that the line integral $\int f_y dx - f_x dy$ is independent of path in any simple region D.
- **24.** (a) Sketch the curve C with parametric equations

$$x = \cos t$$
 $y = \sin t$ $z = \sin t$ $0 \le t \le 2\pi$

- (b) Find $\int_C 2xe^{2y} dx + (2x^2e^{2y} + 2y \cot z) dy y^2 \csc^2 z dz$.
- **25.** Find the area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices (0, 0), (1, 0), and (1, 2).
- **26.** (a) Find an equation of the tangent plane at the point (4, -2, 1)to the parametric surface S given by

$$\mathbf{r}(u, v) = v^2 \mathbf{i} - uv \mathbf{j} + u^2 \mathbf{k} \quad 0 \le u \le 3, -3 \le v \le 3$$

- (b) Use a computer to graph the surface S and the tangent plane found in part (a).
 - (c) Set up, but do not evaluate, an integral for the surface area of S.
- (d) If

$$\mathbf{F}(x, y, z) = \frac{z^2}{1 + x^2} \mathbf{i} + \frac{x^2}{1 + y^2} \mathbf{j} + \frac{y^2}{1 + z^2} \mathbf{k}$$

find $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ correct to four decimal places.

27–30 Evaluate the surface integral.

- **27.** $\iint_S z \, dS$, where *S* is the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 4
- **28.** $\iint_S (x^2z + y^2z) dS$, where *S* is the part of the plane z = 4 + x + y that lies inside the cylinder $x^2 + y^2 = 4$
- **29.** $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = xz \, \mathbf{i} 2y \, \mathbf{j} + 3x \, \mathbf{k}$ and *S* is the sphere $x^2 + y^2 + z^2 = 4$ with outward orientation
- 30. ∫∫_S **F** · d**S**, where **F**(x, y, z) = x²**i** + xy **j** + z **k** and S is the part of the paraboloid z = x² + y² below the plane z = 1 with upward orientation
- **31.** Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$, where *S* is the part of the paraboloid $z = 1 x^2 y^2$ that lies above the *xy*-plane and *S* has upward orientation.
- **32.** Use Stokes' Theorem to evaluate $\iint_{S} \text{curl } \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = x^2yz \mathbf{i} + yz^2 \mathbf{j} + z^3e^{xy}\mathbf{k}$, S is the part of the sphere $x^2 + y^2 + z^2 = 5$ that lies above the plane z = 1, and S is oriented upward.
- **33.** Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$, and C is the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented counterclockwise as viewed from above.
- **34.** Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$ and S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = 0 and z = 2.
- **35.** Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, where *E* is the unit ball $x^2 + y^2 + z^2 \le 1$.
- **36.** Compute the outward flux of

$$\mathbf{F}(x, y, z) = \frac{x \,\mathbf{i} + y \,\mathbf{j} + z \,\mathbf{k}}{(x^2 + y^2 + z^2)^{3/2}}$$

through the ellipsoid $4x^2 + 9y^2 + 6z^2 = 36$.

37. Let

$$\mathbf{F}(x, y, z) = (3x^2yz - 3y)\mathbf{i} + (x^3z - 3x)\mathbf{j} + (x^3y + 2z)\mathbf{k}$$

Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where *C* is the curve with initial point (0, 0, 2) and terminal point (0, 3, 0) shown in the figure.

38. Let

$$\mathbf{F}(x,y) = \frac{(2x^3 + 2xy^2 - 2y)\,\mathbf{i} + (2y^3 + 2x^2y + 2x)\,\mathbf{j}}{x^2 + y^2}$$

Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where *C* is shown in the figure.

39. Find $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}$ and S is the outwardly oriented surface shown in the figure (the boundary surface of a cube with a unit corner cube removed).

- **40.** If the components of **F** have continuous second partial derivatives and *S* is the boundary surface of a simple solid region, show that $\iint_S \text{curl } \mathbf{F} \cdot d\mathbf{S} = 0$.
- **41.** If **a** is a constant vector, $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, and *S* is an oriented, smooth surface with a simple, closed, smooth, positively oriented boundary curve *C*, show that

$$\iint_{\mathcal{L}} 2\mathbf{a} \cdot d\mathbf{S} = \int_{\mathcal{L}} (\mathbf{a} \times \mathbf{r}) \cdot d\mathbf{r}$$