the origin. [This is a special case of Gauss's Law (Equation 16.7.11) for a single charge. The relationship between ε and ε_0 is $\varepsilon=1/(4\pi\varepsilon_0)$.]

Another application of the Divergence Theorem occurs in fluid flow. Let $\mathbf{v}(x, y, z)$ be the velocity field of a fluid with constant density ρ . Then $\mathbf{F} = \rho \mathbf{v}$ is the rate of flow per unit area. If $P_0(x_0, y_0, z_0)$ is a point in the fluid and B_a is a ball with center P_0 and very small radius a, then div $\mathbf{F}(P) \approx \text{div } \mathbf{F}(P_0)$ for all points in B_a since div \mathbf{F} is continuous. We approximate the flux over the boundary sphere S_a as follows:

$$\iint\limits_{S_a} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{B_a} \operatorname{div} \mathbf{F} \, dV = \iint\limits_{B_a} \operatorname{div} \mathbf{F}(P_0) \, dV = \operatorname{div} \mathbf{F}(P_0) V(B_a)$$

This approximation becomes better as $a \rightarrow 0$ and suggests that

FIGURE 4 The vector field $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$

$\operatorname{div} \mathbf{F}(P_0) = \lim_{a \to 0} \frac{1}{V(B_a)} \iint_{S_a} \mathbf{F} \cdot d\mathbf{S}$

Equation 8 says that div $\mathbf{F}(P_0)$ is the net rate of outward flux per unit volume at P_0 . (This is the reason for the name *divergence*.) If div $\mathbf{F}(P) > 0$, the net flow is outward near P and P is called a **source**. If div $\mathbf{F}(P) < 0$, the net flow is inward near P and P is called a **sink**.

For the vector field in Figure 4, it appears that the vectors that end near P_1 are shorter than the vectors that start near P_1 . Thus the net flow is outward near P_1 , so div $\mathbf{F}(P_1) > 0$ and P_1 is a source. Near P_2 , on the other hand, the incoming arrows are longer than the outgoing arrows. Here the net flow is inward, so div $\mathbf{F}(P_2) < 0$ and P_2 is a sink. We can use the formula for \mathbf{F} to confirm this impression. Since $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$, we have div $\mathbf{F} = 2x + 2y$, which is positive when y > -x. So the points above the line y = -x are sources and those below are sinks.

16.9 EXERCISES

I–4 Verify that the Divergence Theorem is true for the vector field **F** on the region *E*.

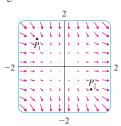
- **I.** $\mathbf{F}(x, y, z) = 3x \, \mathbf{i} + xy \, \mathbf{j} + 2xz \, \mathbf{k}$, E is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1
- **2.** $\mathbf{F}(x, y, z) = x^2 \mathbf{i} + xy \mathbf{j} + z \mathbf{k}$, E is the solid bounded by the paraboloid $z = 4 - x^2 - y^2$ and the xy-plane
- 3. $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$, E is the solid cylinder $x^2 + y^2 \le 1$, $0 \le z \le 1$
- **4.** $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k},$ *E* is the unit ball $x^2 + y^2 + z^2 \le 1$

5–15 Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S.

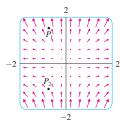
- **5.** $\mathbf{F}(x, y, z) = e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j} + yz^2 \mathbf{k}$, S is the surface of the box bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 2
- **6.** $\mathbf{F}(x, y, z) = x^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + xz^4 \mathbf{k}$, S is the surface of the box with vertices $(\pm 1, \pm 2, \pm 3)$

- 7. $\mathbf{F}(x, y, z) = 3xy^2 \mathbf{i} + xe^z \mathbf{j} + z^3 \mathbf{k}$, S is the surface of the solid bounded by the cylinder $y^2 + z^2 = 1$ and the planes x = -1 and x = 2
- **8.** $\mathbf{F}(x, y, z) = x^3 y \mathbf{i} x^2 y^2 \mathbf{j} x^2 y z \mathbf{k}$, S is the surface of the solid bounded by the hyperboloid $x^2 + y^2 - z^2 = 1$ and the planes z = -2 and z = 2
- **9.** $\mathbf{F}(x, y, z) = xy \sin z \, \mathbf{i} + \cos(xz) \, \mathbf{j} + y \cos z \, \mathbf{k}$, S is the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$
- **10.** $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + x y^2 \mathbf{j} + 2 x y z \mathbf{k}$, S is the surface of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, and x + 2y + z = 2
- **11.** $\mathbf{F}(x, y, z) = (\cos z + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin y + x^2z)\mathbf{k}$, S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4
- 12. $\mathbf{F}(x, y, z) = x^4 \mathbf{i} x^3 z^2 \mathbf{j} + 4xy^2 z \mathbf{k}$, S is the surface of the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes z = x + 2 and z = 0
- **13.** $\mathbf{F}(x, y, z) = 4x^3z\mathbf{i} + 4y^3z\mathbf{j} + 3z^4\mathbf{k}$, S is the sphere with radius R and center the origin

- **14.** $\mathbf{F} = \mathbf{r}/|\mathbf{r}|$, where $r = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, S consists of the hemisphere $z = \sqrt{1 - x^2 - y^2}$ and the disk $x^2 + y^2 \le 1$ in the xy-plane
- IS. $\mathbf{F}(x, y, z) = e^y \tan z \, \mathbf{i} + y \sqrt{3 x^2} \, \mathbf{j} + x \sin y \, \mathbf{k}$, S is the surface of the solid that lies above the xy-plane and below the surface $z = 2 - x^4 - y^4$, $-1 \le x \le 1$, $-1 \le y \le 1$
- [AS] **16.** Use a computer algebra system to plot the vector field $\mathbf{F}(x, y, z) = \sin x \cos^2 y \, \mathbf{i} + \sin^3 y \cos^4 z \, \mathbf{j} + \sin^5 z \cos^6 x \, \mathbf{k}$ in the cube cut from the first octant by the planes $x = \pi/2$, $y = \pi/2$, and $z = \pi/2$. Then compute the flux across the surface of the cube.
 - 17. Use the Divergence Theorem to evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = z^2 x \mathbf{i} + \left(\frac{1}{3}y^3 + \tan z\right) \mathbf{j} + (x^2 z + y^2) \mathbf{k}$ and S is the top half of the sphere $x^2 + y^2 + z^2 = 1$. [*Hint:* Note that S is not a closed surface. First compute integrals over S_1 and S_2 , where S_1 is the disk $x^2 + y^2 \le 1$, oriented downward, and $S_2 = S \cup S_1$.]
 - **18.** Let $\mathbf{F}(x, y, z) = z \tan^{-1}(y^2)\mathbf{i} + z^3 \ln(x^2 + 1)\mathbf{j} + z\mathbf{k}$. Find the flux of \mathbf{F} across the part of the paraboloid $x^2 + y^2 + z = 2$ that lies above the plane z = 1 and is oriented upward.
 - **19.** A vector field \mathbf{F} is shown. Use the interpretation of divergence derived in this section to determine whether div \mathbf{F} is positive or negative at P_1 and at P_2 .



- **20.** (a) Are the points P_1 and P_2 sources or sinks for the vector field **F** shown in the figure? Give an explanation based solely on the picture.
 - (b) Given that $\mathbf{F}(x, y) = \langle x, y^2 \rangle$, use the definition of divergence to verify your answer to part (a).



[45] 21–22 Plot the vector field and guess where div $\mathbf{F} > 0$ and where div $\mathbf{F} < 0$. Then calculate div \mathbf{F} to check your guess.

21.
$$\mathbf{F}(x, y) = \langle xy, x + y^2 \rangle$$

22.
$$F(x, y) = \langle x^2, y^2 \rangle$$

- **23.** Verify that div $\mathbf{E}=0$ for the electric field $\mathbf{E}(\mathbf{x})=\frac{\varepsilon Q}{\|\mathbf{x}\|^3}\,\mathbf{x}$.
- **24.** Use the Divergence Theorem to evaluate $\iint_S (2x + 2y + z^2) dS$ where S is the sphere $x^2 + y^2 + z^2 = 1$.

25–30 Prove each identity, assuming that *S* and *E* satisfy the conditions of the Divergence Theorem and the scalar functions and components of the vector fields have continuous second-order partial derivatives.

25.
$$\iint_{S} \mathbf{a} \cdot \mathbf{n} \, dS = 0$$
, where **a** is a constant vector

26.
$$V(E) = \frac{1}{3} \iint_{S} \mathbf{F} \cdot d\mathbf{S}$$
, where $\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$

27.
$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 0$$

28.
$$\iint\limits_{S} D_{\mathbf{n}} f dS = \iiint\limits_{E} \nabla^{2} f dV$$

29.
$$\iint\limits_{S} (f \nabla g) \cdot \mathbf{n} \, dS = \iiint\limits_{E} (f \nabla^{2} g + \nabla f \cdot \nabla g) \, dV$$

30.
$$\iint\limits_{S} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, dS = \iiint\limits_{E} (f \nabla^{2} g - g \nabla^{2} f) \, dV$$

31. Suppose *S* and *E* satisfy the conditions of the Divergence Theorem and *f* is a scalar function with continuous partial derivatives. Prove that

$$\iint_{S} f\mathbf{n} \, dS = \iiint_{S} \nabla f \, dV$$

These surface and triple integrals of vector functions are vectors defined by integrating each component function. [*Hint:* Start by applying the Divergence Theorem to $\mathbf{F} = f\mathbf{c}$, where \mathbf{c} is an arbitrary constant vector.]

32. A solid occupies a region E with surface S and is immersed in a liquid with constant density ρ . We set up a coordinate system so that the xy-plane coincides with the surface of the liquid and positive values of z are measured downward into the liquid. Then the pressure at depth z is $p = \rho gz$, where g is the acceleration due to gravity (see Section 6.5). The total buoyant force on the solid due to the pressure distribution is given by the surface integral

$$\mathbf{F} = -\iint\limits_{S} p\mathbf{n} \, dS$$

where **n** is the outer unit normal. Use the result of Exercise 31 to show that $\mathbf{F} = -W\mathbf{k}$, where W is the weight of the liquid displaced by the solid. (Note that \mathbf{F} is directed upward because z is directed downward.) The result is *Archimedes'* principle: The buoyant force on an object equals the weight of the displaced liquid.