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the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a single charge.
The relationship between € and g, is € = 1/(47gy).]

Another application of the Divergence Theorem occurs in fluid flow. Let v(x, y, z) be
the velocity field of a fluid with constant density p. Then F = pv is the rate of flow per
unit area. If Po(xo, Yo, zo) is a point in the fluid and B, is a ball with center Py and very small
radius a, then div F(P) =~ div F(P,) for all points in B, since div F is continuous. We
approximate the flux over the boundary sphere S, as follows:

jj F-dS= M divF dV = M div F(Py) dV = div F(Py)V(B.)
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This approximation becomes better as a — 0 and suggests that

srtt it s divF(Po)=lier)ﬁfF-dS
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I PR Equation 8 says that div F(P,) is the net rate of outward flux per unit volume at P,. (This

O, o is the reason for the name divergence.) If div F(P) > 0, the net flow is outward near P and

. L P is called a source. If div F(P) < 0, the net flow is inward near P and P is called a sink.

I PR For the vector field in Figure 4, it appears that the vectors that end near P; are shorter

R than the vectors that start near P;. Thus the net flow is outward near P;, so div F(P;) > 0

P 'fz RS and P, is a source. Near P,, on the other hand, the incoming arrows are longer than the

APttt outgoing arrows. Here the net flow is inward, so div F(P,) < 0 and P, is a sink. We
can use the formula for F to confirm this impression. Since F = x?i + y?j, we have

FIGURE 4 divF = 2x + 2y, which is positive when y > —x. So the points above the line y = —x

The vector field F = x*i + y?j are sources and those below are sinks.

16.9| EXERCISES

I-4 Verify that the Divergence Theorem is true for the vector field F(x,y,z) = 3xy’i + xe’j + 2Kk,
F on the region E. S is the surface of the solid bounded by the cylinder
2+ 72 =1 and the planes x = —1 and x = 2
[1JF(x,y,z) =3xi+xyj+ 2xzk, yore and fe planes ancax
E is the cube bounded by the planes x =0, x =1,y = 0, 8. F(x,y,2) = xyi— x3?%j — x%yzk,
y=1lz=0andz=1 S is the surface of the solid bounded by the hyperboloid
2. F(x,y,2) = x%i + xyj + 2k, x>+ y? — 2z = 1 and the planes z = —2 and z = 2

E is the solid bounded by the paraboloid z = 4 — x> — y?

and the xy-plane F(x,y,z) = xysinzi + cos(xz)j + ycos zk,

S is the ellipsoid x*/a* + y*/b* + z%*/c* = 1
3. F(x,y,z) = xyi+ yzj + zxKk,

E is the solid cylinder x> + y2< 1,0 < z < 1 10. F(x,y,2) = xyi + xy’j + 2xyzK,
. . S is the surface of the tetrahedron bounded by the planes
4. F(x,y,z) =xi+yj+zKk, x=0,y=0,z=0,andx + 2y + z=2

Eis the unit ball x> + y> + 22 < 1

1. F(x,y,2z) = (cos z + xy?)i + xe*j + (siny + x’2)Kk,
S is the surface of the solid bounded by the paraboloid

5-15 Use the Divergence Theorem to calculate the surface integral z=x*+ y?and the plane z = 4

JJ4 F - dS; that is, calculate the flux of F across S.

12. F(x,y,z) = x*i — x’z%j + 4xy’zKk,
S is the surface of the solid bounded by the cylinder
x?>+ y?=1and the planesz = x + 2 and z = 0

5. F(x,y,z) = e*sinyi + e*cosyj + yz°Kk,
S is the surface of the box bounded by the planes x = 0,
x=1,y=0,y=1,z=0,andz =2

6. F(x,y,z) = x’2°i + 2xyz’j + xz*k, 13. F(x,y,z) = 4x°zi + 4y°zj + 3z%k,
S is the surface of the box with vertices (*1, 2, +3) S is the sphere with radius R and center the origin



1104 ||| CHAPTER 16 VECTOR CALCULUS

14. F=r/|r|, wherer = xi+yj+ zk,
S consists of the hemisphere z = /1 — x> — y? and the
disk x* + y> < 1 in the xy-plane
(s115. F(x,y,z) = e’tanzi + yy/3 — x2 j + xsinyKk,
S is the surface of the solid that lies above the xy-plane
and below the surfacez =2 — x* — y*, —1 <sx =<1,
—-l=sy=<1l

(5] 16. Use a computer algebra system to plot the vector field
F(x,y,z) = sin x cos’yi + sin’y cos*z j + sin’z cos’x k
in the cube cut from the first octant by the planes x = /2,
y = /2, and z = 7/2. Then compute the flux across the
surface of the cube.

17. Use the Divergence Theorem to evaluate HS F - dS, where
F(x,y,z) = 22xi + (}y + tanz) j + (x%2 + yH)k
and S is the top half of the sphere x> + y* + z* = 1.
[Hint: Note that S is not a closed surface. First compute
integrals over S; and S,, where S, is the disk x> + y? < 1,
oriented downward, and S, = S U §,.]

18. LetF(x,y,z) = ztan '(y)i+ 22 In(x* + 1) j + z k.
Find the flux of F across the part of the paraboloid
x% + y? + z = 2 that lies above the plane z = 1 and is
oriented upward.

A vector field F is shown. Use the interpretation of diver-
gence derived in this section to determine whether div F
is positive or negative at P1 and at P».

20. (a) Are the points P1 and P2 sources or sinks for the vector
field F shown in the figure? Give an explanation based
solely on the picture.

(b) Given that F(x, y) = (x, y?), use the definition of diver-
gence to verify your answer to part (a).
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21-22 Plot the vector field and guess where div F > 0 and
where div F < 0. Then calculate div F to check your guess.

21. F(x,y) = (xy,x + y?)

22. F(x,y) = (x*y?)

23. Verify that div E = 0 for the electric field E(x) = 20 X.

[x]?
24. Use the Divergence Theorem to evaluate ([ (2x + 2y + z%) dS

where S is the sphere x> + y? + z2 = 1.

25-30 Prove each identity, assuming that S and E satisfy the con-
ditions of the Divergence Theorem and the scalar functions and
components of the vector fields have continuous second-order
partial derivatives.

25, ﬂ a -+ ndS = 0, where a is a constant vector
N

26. V(E) :%fj F - dS, where F(x,y,z) =xi+yj+ zk

N

27. Jj curl F - dS = 0

N

28. ﬂ ands=m' Vfav

N E

29. ﬂ (fVg) -nds = M (fV3 + Vf- Vg) dvV

N

30. ([ (fVg — gVf) -nas = ||| (£V% ~ gV av

N E

31. Suppose S and E satisfy the conditions of the Divergence The-
orem and f is a scalar function with continuous partial deriva-
tives. Prove that

ﬁ fnds = m Vidv

N E
These surface and triple integrals of vector functions are
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theorem to F = fec,
where c is an arbitrary constant vector.]

32. A solid occupies a region E with surface S and is immersed in
a liquid with constant density p. We set up a coordinate
system so that the xy-plane coincides with the surface of the
liquid and positive values of z are measured downward into
the liquid. Then the pressure at depth z is p = pgz, where g is
the acceleration due to gravity (see Section 6.5). The total
buoyant force on the solid due to the pressure distribution is
given by the surface integral

F=—fj‘pnds

N

where n is the outer unit normal. Use the result of Exercise 31
to show that F = — WKk, where W is the weight of the liquid
displaced by the solid. (Note that F is directed upward
because z is directed downward.) The result is Archimedes’
principle: The buoyant force on an object equals the weight of
the displaced liquid.



