HW 2.

1. (Bender-Stone, Green) Find all pairs (κ, λ) of cardinals such that the cardinal sum $\kappa+_{c} \lambda$ agrees with the ordinal sum $\kappa+_{o} \lambda$.
2. (Bender-Stone, Rodriguez) Show that
(a) $\left|\mathcal{P}\left(\aleph_{0}\right)\right|=2^{\aleph_{0}}$.
(b) Show that the ordered set $\left\langle\mathcal{P}\left(\aleph_{0}\right) ; \subseteq\right\rangle$ contains a chain of cardinality $2^{\aleph_{0}}$.
(c) Show that the ordered set $\left\langle\mathcal{P}\left(\aleph_{0}\right) ; \subseteq\right\rangle$ contains an antichain of cardinality $2^{\aleph_{0}}$.
3. (Green, Rodriguez)
(a) Suppose that κ is an infinite cardinal and α is a smaller ordinal. Show that the interval $[\alpha, \kappa)$ of ordinals is order-isomorphic to κ.
(b) Suppose that $\kappa_{0}<\kappa_{1}<\kappa_{2}<\cdots$ is a strictly increasing sequence of cardinals with limit κ. Explain why each interval $\left[\kappa_{i}, \kappa_{i+1}\right)$ is order-isomorphic to κ_{i+1}.
(c) Suppose that $\kappa_{0}<\kappa_{1}<\kappa_{2}<\cdots$ is an increasing sequence of cardinals with limit κ. Show that $\sum \kappa_{i}=\sup \left\{\kappa_{i}\right\}=\kappa$.
