4. Let \mathbb{F} be a field of size κ and let V be an \mathbb{F}-vector space of infinite dimension λ.
(a) Show that the dimension of the dual space V^{*} is κ^{λ}.
(b) Use the Main Theorem of Cardinal Arithmetic to simplify $\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right)$ in the case where $|\mathbb{F}|=\beth_{\omega_{1}}$ and $\operatorname{dim}_{\mathbb{F}}(V)=\aleph_{0}$.

Proof. (a) Let $B=\left\{b_{i}: i<\lambda\right\}$ be an ordered basis for V. By the hypothesis, $|B|=\lambda$ and $|\mathbb{F}|=\kappa$. Each $f \in V^{*}=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$ is uniquely determined by its restriction $\left.f\right|_{B}: B \rightarrow \mathbb{F}$, which is arbitrary. Hence, $\left|V^{*}\right|=\left|\mathbb{F}^{B}\right|=\kappa^{\lambda}$.

Claim: If the $\operatorname{dim}_{\mathbb{F}}(V)$ is infinite, then $\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right)$ is equal to the cardinality of V^{*}.
It is clear $\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right) \leq\left|V^{*}\right|$.
Case 1: $\left(|\mathbb{F}|<\left|V^{*}\right|\right)$ Let W be an infinite \mathbb{F} vector space. We argue if $|\mathbb{F}|<|W|$, then $\operatorname{dim}(W)=|W|$. Let C be a basis for W. Note if \mathbb{F} and C are finite, then W would be finite. Hence $|\mathbb{F}|+|C|$ must be infinite. Since every vector in W is expressible as a finite string of symbols from $\mathbb{F} \cup C \cup\{+\}$, we must have $|W| \leq|\mathbb{F}|+|C|+\aleph_{0}=|\mathbb{F}|+|C|$. Since $|\mathbb{F}|<|W| \leq|\mathbb{F}|+|C|$ and the right hand side is infinite, $|\mathbb{F}|<|C|$.

Putting these ideas together,

$$
|C| \leq|W| \leq|\mathbb{F}|+|C|=\max (|\mathbb{F}|,|C|)=|C| .
$$

Hence $|W|=|C|=\operatorname{dim}(W)$.
Case 2: $\left(|\mathbb{F}|=\left|V^{*}\right|\right)$ Choose $a \in \mathbb{F}$ and define a functional $\hat{a} \in V^{*}$ by,

$$
\hat{a}\left(b_{i}\right)=\left\{\begin{array}{lr}
a^{i}, & \text { if } i<\omega \tag{1}\\
0, & \text { else }
\end{array}\right\}
$$

for $b_{i} \in B$.
Let's argue that $\hat{\mathbb{F}}=\{\hat{a}: a \in \mathbb{F}\}$ is an independent subset of V^{*}. If not, there exists a dependence relation, $c_{1} \hat{a_{1}}+\cdots+c_{k} \hat{a_{k}}=0$ where not all $c_{j}=0$ for $1 \leq j \leq k$. Writing this dependence relation in matrix form,

$$
A \vec{c}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & \cdots & a_{k} \\
a_{1}^{2} & a_{2}^{2} & \cdots & a_{k}^{2} \\
\vdots & & & \vdots
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{k}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots
\end{array}\right] .
$$

Because the columns of a Vandermonde matrix are independent, the vector $\vec{c}=\overrightarrow{0}$. This contradicts our assumption of not all $c_{j}=0$.

The $\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right)$ is greater than or equal to the size of any independent subset, like $\hat{\mathbb{F}}$. Then, $|\mathbb{F}|=|\hat{\mathbb{F}}| \leq \operatorname{dim}_{\mathbb{F}}\left(V^{*}\right) \leq\left|V^{*}\right|=|\mathbb{F}|$. Hence, $\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right)=\left|V^{*}\right|$.

Therefore, since $\left|V^{*}\right|=\kappa^{\lambda}$ and $\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right)=\left|V^{*}\right|, \operatorname{dim}_{\mathbb{F}}\left(V^{*}\right)=\kappa^{\lambda}$.
(b) Allow $\kappa=\beth_{\omega_{1}}$ and $\lambda=\aleph_{0}$. Since $\lambda<\kappa$, so we are not in Case 1 of the Main Theorem of Cardinal Arithmetic. Since κ is not λ-reachable from below, we are not in Case 2. Also note the cofinality of $\beth_{\omega_{1}}$ is ω_{1} and $\omega_{1}>\aleph_{0}$. By the Main Theorem of Cardinal Arithmetic,

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{F}}\left(V^{*}\right) & =\beth_{\omega_{1}}^{\aleph_{0}} \\
& =\beth_{\omega_{1}} .
\end{aligned}
$$

