3. Show that GCH is equivalent over ZFC to the statement that for infinite cardinals κ , it holds that $\kappa^+ = \kappa^{cf(\kappa)}$:

Proof. We have the following chain of inequalities, the nontrivial one resulting from Konig's theorem:

$$cf(\kappa) \le \kappa < \kappa^+ \le \kappa^{cf(\kappa)} \le \kappa^\kappa = 2^\kappa$$

From the Generalized Continuum Hypothesis, we have $\kappa^+ = 2^{\kappa}$, and thus $\kappa = \kappa^{cf(\kappa)}$. This takes care of the forward direction of the proof.

For the backward direction of the proof, assume that $\kappa^+ = \kappa^{cf(\kappa)}$.

Case 1: κ is regular. If κ is regular, then we would have $\kappa^{cf(\kappa)} = \kappa^{\kappa} = 2^{\kappa}$, so GCH follows easily.

Case 2: κ is singular. If κ is singular, then we need to show that $\kappa^{cf(\kappa)} = \kappa^{\kappa}$

Assume, for contradiction that λ is the least infinite cardinal such that $\lambda^+ < 2^{\lambda}$. We will argue that $\lambda^+ < \lambda^{\operatorname{cf}(\lambda)}$, contradicting the assumption in the first sentence of this paragraph.

Choose an increasing sequence of cardinals

$$\mu_0 < \mu_1 < \mu_2 < \dots$$

of length $cf(\lambda)$ whose union is λ .

Because $\mu_i < \lambda$ for all *i*, this means that $2^{\mu_i} = (\mu_i)^+ \leq \mu_{i+1} < \lambda$, so

$$\bigcup \mu_i = \bigcup 2^{\mu_i} = \lambda$$

or, in arithmetic terms,

$$\sum \mu_i = \sum 2^{\mu_i} = \lambda$$

We then have the following chain of inequalities, where the first inequality is our assumption for contradiction:

$$\lambda^+ < 2^{\lambda} = 2^{\sup(\mu_i)} \le 2^{\sum \mu_i} = \prod 2^{\mu_i} \le \prod \lambda = \lambda^{\operatorname{cf}(\lambda)}$$

In particular, we have $\lambda^+ < \lambda^{cf(\lambda)}$, a contradiction of the hypothesis of this problem.