2. Show that if κ and λ are infinite cardinals and $\kappa < \lambda$, then there is an infinite cardinal μ such that $\mu^{\kappa} < \mu^{\lambda}$.

Proof. Let μ be the limit of the sequence $(\mu_{\alpha})_{\alpha < \kappa^+}$, which is defined below by transfinite recursion:

- $\mu_0 = \lambda$,
- $\mu_1 = 2^{\lambda}$,
- $\mu_{\alpha+1} = (\mu_{\alpha}^+)^{\lambda}$,
- for any limit ordinal α , $\mu_{\alpha} = \bigcup_{\beta < \alpha} \mu_{\beta}$.

Clearly μ is a strong limit cardinal since whenever $\eta < \mu, \eta < \mu_{\alpha}$ for some $\alpha \in On$, hence $2^{\eta} \leq (\mu_{\alpha})^{\eta} \leq (\mu_{\alpha}^{+})^{\eta} = \mu_{\alpha+1} < \mu$. Moreover, $cf(\mu) = \kappa^{+}$ since μ is the limit of a strictly increasing κ^{+} - sequence of cardinals. It follows that $cf(\mu) > \kappa$, and $\kappa^{+} \leq \lambda$ since there are no cardinals in (κ, κ^{+}) . Finally, μ is λ -unreachable from below since for any $\eta \leq \mu_{\alpha} < \mu$, with $\alpha \in On, \ \eta^{\lambda} \leq (\mu_{\alpha})^{\lambda} \leq (\mu_{\alpha}^{+})^{\lambda} = \mu_{\alpha+1} < \mu$. By part (*iii*) of the Main Theorem of Cardinal Arithmetic, $\mu^{\lambda} = \mu^{cf(\mu)}$ and $\mu = \mu^{\kappa}$, and by Kőnig's Theorem, $\mu^{\lambda} = \mu^{cf(\mu)} > \mu = \mu^{\kappa}$.