1. Show that the following statement is equivalent over ZFC to CH :

The real plane \mathbb{R}^{2} may be partitioned into two cells, $\{A, B\}$, in such a way that any horizontal line in \mathbb{R}^{2} has countable intersection with A and any vertical line in \mathbb{R}^{2} has countable intersection with B.

Proof. (\Rightarrow) Assume CH so that $\aleph_{1}=2^{\aleph_{0}}$. Let $\left(r_{\alpha}\right)_{\alpha<\aleph_{1}}$ be an enumeration of \mathbb{R}. Consider the partition of \mathbb{R}^{2} whose cells are $A=\left\{\left(r_{\alpha}, r_{\beta}\right) \in \mathbb{R}^{2} \mid \alpha \leq \beta<\aleph_{1}\right\}$ and the complement B. Let us denote $L_{y_{0}}$ as the horizontal line $y=y_{0}$ in \mathbb{R}^{2} and $L_{x_{0}}$ as the vertical line $x=x_{0}$ in \mathbb{R}^{2}. Given $y_{0}=r_{\beta}$, we have

$$
L_{y_{0}} \cap A=\left\{\left(r_{0}, y_{0}\right),\left(r_{1}, y_{0}\right), \ldots,\left(r_{\beta}, y_{0}\right)\right\}
$$

so $\left|L_{y_{0}} \cap A\right| \leq|\beta|<\aleph_{1}$. Similarly, for any $x_{0},\left|L_{x_{0}} \cap B\right| \leq|\beta|<\aleph_{1}$. In both cases, by CH, both intersections are countable.
(\Leftarrow) Assume CH does not hold. Then $|\mathbb{R}|>\aleph_{1}$, i.e. $|\mathbb{R}| \geq \aleph_{2}$. Let's start by looking at a set H of \aleph_{1} many vertical lines. Suppose, for contradiction, we have a partition $\{A, B\}$ satisfying the above conditions. We have $|(\bigcup H) \cap B|=|\bigcup(\{L \cap B \mid L \in H\})|=\aleph_{0} \cdot \aleph_{1}=\aleph_{1}$, because there are exactly \aleph_{1} many vertical lines, and B has countable intersection with each of them. Since $|(\bigcup H) \cap B|<|\mathbb{R}|$, the projection of $(\bigcup H) \cap B$ onto the vertical axis is not surjective. Therefore there must exist some $y_{0} \in \mathbb{R}$ such that the entire line $y=y_{0}$ contains a set K, the set of intersection points of the line $y=y_{0}$ and the vertical lines of H, with \aleph_{1}-many points in H and not in B. Thus, $K \subseteq A$, which contradicts the ability for A to have countable intersection with every horizontal line.

