Problem 2. (a) Show that $|\mathcal{P}(\aleph_0)| = 2^{\aleph_0}$.

- (b) Show that the ordered set $\langle \mathcal{P}(\aleph_0); \subseteq \rangle$ contains a chain of cardinality 2^{\aleph_0} .
- (c) Show that the ordered set $\langle \mathcal{P}(\aleph_0); \subseteq \rangle$ contains an antichain of cardinality 2^{\aleph_0} .
- *Proof.* (a) Define $f : \mathcal{P}(\aleph_0) \to 2^{\aleph_0}$ by $f(A) = \chi_A$ for $A \subseteq \aleph_0$, where

$$\chi_A(a) = \begin{cases} 1 & \text{if } a \in A, \\ 0 & \text{otherwise} \end{cases}.$$

Let $A, B \subseteq \aleph_0$. By the Axiom of Extensionality, $\chi_A = \chi_B$ implies A = B. Moreover, by the Axiom of Separation, f(G) = g, where $G = \{x \in \aleph_0 \mid g(x) = 1\}$ is a set. Thus, f is a bijection, proving $|\mathcal{P}(\aleph_0)| = |2^{\aleph_0}| = 2^{\aleph_0}$.

(b) Let $h : \mathbb{N} \to \mathbb{Q}$ be a bijection, which exists since $|\mathbb{N}| = |\mathbb{Q}|$. Define

$$D(r) = \{ n \in \aleph_0 \mid h(n) < r \},\tag{1}$$

where r is a real number. Observe that $r \leq r'$ implies $D(r) \subseteq D(r')$ for any reals r, r'since h(n) < r implies h(n) < r'. Thus, in general, $D(r) \subseteq D(r')$ or $D(r') \subseteq D(r)$. Moreover, D(r) = D(r') implies $h(n) < r \iff h(n) < r'$ for any $n \in \aleph_0$, hence by the Archimedean Property r = r'. Therefore, the set

$$D = \{ L \in \mathcal{P}(\aleph_0) \mid L = D(r) \}$$

$$\tag{2}$$

is a chain of cardinality 2^{\aleph_0} .

(c) Let h and D(r) be defined as above, and let

$$L(r) = \{ n \in \aleph_0 \mid r < h(n) \},\tag{3}$$

$$E(r) = D(r) \cup L(r+1) \tag{4}$$

for any real number r. Suppose r, r' are real numbers, and without loss of generality, assume r < r'. Then, by the Archimedean property, there is some $q \in \mathbb{Q}$ satisfying r < q < r'. Thus, $D(r') \setminus D(r)$ and $L(r+1) \setminus L(r'+1)$ are non-empty, so $E(r) \not\subseteq E(r')$ and $E(r') \not\subseteq E(r)$.

Moreover, if E(r) = E(r'), then because h is a bijection, D(r) = D(r') and L(r) = L(r'), hence r = r'. Thus,

$$F = \{ H \in \mathcal{P}(\aleph_0) \mid H = E(r) \}$$
(5)

is an antichain of cardinality 2^{\aleph_0} .