Problem 2. (a) Show that $\left|\mathcal{P}\left(\aleph_{0}\right)\right|=2^{\aleph_{0}}$.
(b) Show that the ordered set $\left\langle\mathcal{P}\left(\aleph_{0}\right) ; \subseteq\right\rangle$ contains a chain of cardinality $2^{\aleph_{0}}$.
(c) Show that the ordered set $\left\langle\mathcal{P}\left(\aleph_{0}\right) ; \subseteq\right\rangle$ contains an antichain of cardinality $2^{\aleph_{0}}$.

Proof. (a) Define $f: \mathcal{P}\left(\aleph_{0}\right) \rightarrow 2^{\aleph_{0}}$ by $f(A)=\chi_{A}$ for $A \subseteq \aleph_{0}$, where

$$
\chi_{A}(a)=\left\{\begin{array}{ll}
1 & \text { if } a \in A \\
0 & \text { otherwise }
\end{array} .\right.
$$

Let $A, B \subseteq \aleph_{0}$. By the Axiom of Extensionality, $\chi_{A}=\chi_{B}$ implies $A=B$. Moreover, by the Axiom of Separation, $f(G)=g$, where $G=\left\{x \in \aleph_{0} \mid g(x)=1\right\}$ is a set. Thus, f is a bijection, proving $\left|\mathcal{P}\left(\aleph_{0}\right)\right|=\left|2^{\aleph_{0}}\right|=2^{\aleph_{0}}$.
(b) Let $h: \mathbb{N} \rightarrow \mathbb{Q}$ be a bijection, which exists since $|\mathbb{N}|=|\mathbb{Q}|$. Define

$$
\begin{equation*}
D(r)=\left\{n \in \aleph_{0} \mid h(n)<r\right\} \tag{1}
\end{equation*}
$$

where r is a real number. Observe that $r \leq r^{\prime}$ implies $D(r) \subseteq D\left(r^{\prime}\right)$ for any reals r, r^{\prime} since $h(n)<r$ implies $h(n)<r^{\prime}$. Thus, in general, $D(r) \subseteq D\left(r^{\prime}\right)$ or $D\left(r^{\prime}\right) \subseteq D(r)$. Moreover, $D(r)=D\left(r^{\prime}\right)$ implies $h(n)<r \Longleftrightarrow h(n)<r^{\prime}$ for any $n \in \aleph_{0}$, hence by the Archimedean Property $r=r^{\prime}$. Therefore, the set

$$
\begin{equation*}
D=\left\{L \in \mathcal{P}\left(\aleph_{0}\right) \mid L=D(r)\right\} \tag{2}
\end{equation*}
$$

is a chain of cardinality $2^{\aleph_{0}}$.
(c) Let h and $D(r)$ be defined as above, and let

$$
\begin{align*}
& L(r)=\left\{n \in \aleph_{0} \mid r<h(n)\right\}, \tag{3}\\
& E(r)=D(r) \cup L(r+1) \tag{4}
\end{align*}
$$

for any real number r. Suppose r, r^{\prime} are real numbers, and without loss of generality, assume $r<r^{\prime}$. Then, by the Archimedean property, there is some $q \in \mathbb{Q}$ satisfying $r<q<r^{\prime}$. Thus, $D\left(r^{\prime}\right) \backslash D(r)$ and $L(r+1) \backslash L\left(r^{\prime}+1\right)$ are non-empty, so $E(r) \nsubseteq E\left(r^{\prime}\right)$ and $E\left(r^{\prime}\right) \nsubseteq E(r)$.

Moreover, if $E(r)=E\left(r^{\prime}\right)$, then because h is a bijection, $D(r)=D\left(r^{\prime}\right)$ and $L(r)=$ $L\left(r^{\prime}\right)$, hence $r=r^{\prime}$. Thus,

$$
\begin{equation*}
F=\left\{H \in \mathcal{P}\left(\aleph_{0}\right) \mid H=E(r)\right\} \tag{5}
\end{equation*}
$$

is an antichain of cardinality $2^{\aleph_{0}}$.

