Problem 1. Find all pairs (κ, λ) of cardinals such that the cardinal sum $\kappa+_{c} \lambda$ agrees with the ordinal sum $\kappa+_{o} \lambda$.

Lemma 1. For all cardinals $\kappa<\lambda$, where λ is infinite, $\kappa+_{o} \lambda=\lambda$.
Proof. Let $\left(W_{1},<_{1}\right),\left(W_{2},<_{2}\right)$ be well-ordered sets with order type κ and λ, respectively. By Hrbacek and Jech, Theorem 6.5.3, the sum $(W,<)$ of $\left(W_{1},<_{1}\right)$ and $\left(W_{2},<_{2}\right)$ is order isomorphic to $\kappa+_{o} \lambda$. Since $\kappa<\lambda,\left(W_{1},<_{1}\right),\left(W_{2},<_{2}\right)$ have different order types, and if W_{2} is isomorphic to an initial segment of $W_{1}, \lambda \leq \kappa$, contradicting $\kappa<\lambda$. The fact that W_{2} is not isomorphic to an initial segment of W_{1} implies that W_{1} is isomorphic to an initial segment of W_{2}, according to Theorem 4.1.3. in Hrbacek and Jech. Thus, W has order type λ, hence $\kappa+{ }_{o} \lambda=\lambda$.

Lemma 2. For all infinite cardinals $\kappa \geq \lambda, \kappa+{ }_{c} \lambda \neq \kappa+{ }_{o} \lambda$.
Proof. Suppose $\kappa+_{c} \lambda=\kappa+_{o} \lambda$. By the Axiom of Choice, $\kappa=\kappa+_{c} \lambda$. By Theorem 6.5.3. in Hrbacek and Jech, κ is an initial segment of $\kappa+_{o} \lambda$. Because $\lambda>0$, this must be a proper initial segment. Moreover, because there is an initial segment of $\kappa+_{o} \lambda$ that has the same cardinality as this sum, $\kappa+_{o} \lambda$ is not an initial ordinal. Thus, $\kappa+_{o} \lambda$ is not a cardinal, so $\kappa+{ }_{c} \lambda=\kappa \neq \kappa+{ }_{o} \lambda$.

Theorem 3. For all cardinals $\kappa, \lambda, \kappa+{ }_{c} \lambda=\kappa+_{o} \lambda$ if and only if both κ, λ are finite or $\kappa<\lambda$, with λ infinite.

Proof. We proved in class that the cardinal sum of finite cardinals agrees with the ordinal sum. When one of κ, λ are infinite, this theorem is proven by Lemmas 1-3 above.

