3. Prove that $m^{n+k}=m^{n} \cdot m^{k}$. (You may assume all the laws of successor and addition that we proved.)

Lemma 0.1. Distributivity of Mulitplication over Addition: $m(n+k)=m \cdot n+m \cdot k$
Proof. We induct on k for fixed m and n.
Base Case $k=0$:

$$
\begin{array}{rlcc}
m \cdot(n+0) & = & m \cdot n & \\
& = & \text { (IC of Addition) } \\
& = & m \cdot n+n+m \cdot 0 & \text { (IC of Addition) } \\
& \text { IC of Multiplication). }
\end{array}
$$

Assume

$$
m \cdot(n+k)=m \cdot n+m \cdot k \text { (I.H.). }
$$

Inductive Step: We want to show that $m(n+S(k))=m \cdot n+m \cdot S(k)$.
We have

$$
\begin{array}{rlc}
m \cdot(n+S(k)) & =\quad m \cdot(S(n+k)) & \text { (RR of Addition) } \\
& =m \cdot(n+k)+m & \text { (RR of Multiplication) } \\
& =(m \cdot n+m \cdot k)+m & \text { (I.H.) } \tag{І.Н.}\\
& =m \cdot n+(m \cdot k+m) & \text { (Associative Law of Addition) } \\
& =m \cdot n+m \cdot S(k) & \text { (RR of Multiplication). }
\end{array}
$$

Lemma 0.2. Associative Law of Multiplication $m \cdot(n \cdot k)=(m \cdot n) \cdot k$.
Proof. We induct on k for fixed m and n.
Base Case $k=0$: We have that $m \cdot(n \cdot 0)=m \cdot 0=0$ and $(m \cdot n) \cdot 0=0$ by the base case in the recursive definition of multiplication

Inductive Step:
Assume

$$
\begin{array}{rlc}
& (m \cdot n) \cdot k=m \cdot(n \cdot k) \text { (I.H.). } \\
m \cdot(n \cdot S(k)) & =\quad m \cdot(n \cdot k+n) & \text { (RR of Multiplication) } \\
& =m \cdot(n \cdot k)+m \cdot n & \text { (Lemma 0.1) } \\
& =(m \cdot n) \cdot k+m \cdot n & \text { (I.H.) } \\
& =(m \cdot n) \cdot S(k) & \text { (RR of Multiplication). }
\end{array}
$$

Lemma 0.3. Unit Law for 1 of Multiplication $m \cdot 1=1 \cdot m=m$ (where $1=S(0)$).
Proof. By the first recursive case of the Multiplication definition, we have that

$$
m \cdot 1=m \cdot 0+m
$$

By the base case of the definition of Multiplication, we have that $m \cdot 0=0$, so then by the additive identity of 0 , we have that

$$
m \cdot 1=m
$$

Proof. We induct on k given m and n.
Base case $k=0$: We need to show that $m^{n+0}=m^{n} \cdot m^{0}$.
We have: $m^{n+0}=m^{n}$ by the base case of the definition of Addition. This is then equal to $m^{n} \cdot 1$ by the Unit Law for 1 of Multiplication. By the Initial Case of the Exponentiation definition, we have that $1=m^{0}$. This gives us that $m^{n}=m^{n} \cdot m^{0}$.

Putting this all together,

$$
\begin{array}{rlcc}
m^{n+0} & = & m^{n} & (\text { IC of Addition) } \\
& = & m^{n} \cdot 1 & (\text { Lemma 0.3) } \\
& =m^{n} \cdot m^{0} & \text { (IC of Exponentiation). }
\end{array}
$$

Inductive Step: Suppose that it is true for some k that $m^{n+k}=m^{n} \cdot m^{k}$. We want to show that $m^{n+S(k)}=m^{n} \cdot m^{S(k)}$.

$$
\begin{array}{rlc}
m^{n+S(k)} & =m^{S(n+k)} & \text { (RR Addition) } \\
& =m^{n+k} \cdot m & \text { (RR Exponentiation) } \\
& =\left(m^{n} \cdot m^{k}\right) \cdot m & \text { (I.H.) } \\
& =m^{n} \cdot\left(m^{k} \cdot m\right) & \text { (Associative Law of Multiplication) } \\
& =m^{n} \cdot m^{S(k)} & \text { (RR Exponentiation). }
\end{array}
$$

Therefore, by induction $m^{n+S(k)}=m^{n} m^{S(k)}$.

