3. Prove that $m^{n+k} = m^n \cdot m^k$. (You may assume all the laws of <u>successor</u> and <u>addition</u> that we proved.)

Lemma 0.1. Distributivity of Mulitplication over Addition: $m(n+k) = m \cdot n + m \cdot k$

Proof. We induct on k for fixed m and n. Base Case k = 0:

$$\begin{array}{lll} m \cdot (n+0) &=& m \cdot n & (\text{IC of Addition}) \\ &=& m \cdot n + 0 & (\text{IC of Addition}) \\ &=& m \cdot n + m \cdot 0 & (\text{IC of Multiplication}). \end{array}$$

Assume

$$m \cdot (n+k) = m \cdot n + m \cdot k$$
 (I.H.).

Inductive Step: We want to show that $m(n + S(k)) = m \cdot n + m \cdot S(k)$. We have

$$m \cdot (n + S(k)) = m \cdot (S(n + k))$$
(RR of Addition)
= $m \cdot (n + k) + m$ (RR of Multiplication)
= $(m \cdot n + m \cdot k) + m$ (I.H.)
= $m \cdot n + (m \cdot k + m)$ (Associative Law of Addition)
= $m \cdot n + m \cdot S(k)$ (RR of Multiplication).

Lemma 0.2. Associative Law of Multiplication $m \cdot (n \cdot k) = (m \cdot n) \cdot k$.

Proof. We induct on k for fixed m and n.

<u>Base Case k = 0</u>: We have that $m \cdot (n \cdot 0) = m \cdot 0 = 0$ and $(m \cdot n) \cdot 0 = 0$ by the base case in the recursive definition of multiplication</u>

Inductive Step:

Assume

$$(m \cdot n) \cdot k = m \cdot (n \cdot k)$$
 (I.H.).

$$m \cdot (n \cdot S(k)) = m \cdot (n \cdot k + n)$$
(RR of Multiplication)
= $m \cdot (n \cdot k) + m \cdot n$ (Lemma 0.1)
= $(m \cdot n) \cdot k + m \cdot n$ (I.H.)
= $(m \cdot n) \cdot S(k)$ (RR of Multiplication).

Lemma 0.3. Unit Law for 1 of Multiplication $m \cdot 1 = 1 \cdot m = m$ (where 1 = S(0)).

Proof. By the first recursive case of the Multiplication definition, we have that

$$m \cdot 1 = m \cdot 0 + m$$

By the base case of the definition of Multiplication, we have that $m \cdot 0 = 0$, so then by the additive identity of 0, we have that

$$m \cdot 1 = m$$

Proof. We induct on k given m and n.

Base case k = 0: We need to show that $m^{n+0} = m^n \cdot m^0$.

We have: $m^{n+0} = m^n$ by the base case of the definition of Addition. This is then equal to $m^n \cdot 1$ by the Unit Law for 1 of Multiplication. By the Initial Case of the Exponentiation definition, we have that $1 = m^0$. This gives us that $m^n = m^n \cdot m^0$.

Putting this all together,

 $\begin{array}{lll} m^{n+0} &=& m^n & (\text{IC of Addition}) \\ &=& m^n \cdot 1 & (\textbf{Lemma 0.3}) \\ &=& m^n \cdot m^0 & (\text{IC of Exponentiation}). \end{array}$

Inductive Step: Suppose that it is true for some k that $m^{n+k} = m^n \cdot m^k$. We want to show that $m^{n+S(k)} = m^n \cdot m^{S(k)}$.

Therefore, by induction $m^{n+S(k)} = m^n m^{S(k)}$.