1. We have explained why the Russell class $\mathcal{R} = \{x | x \notin x\}$ is a proper class. Show that each one of the following is also a proper class.

- 1. the class \mathcal{C} of all sets.
- 2. the class \mathcal{D} of all 1-element sets.

(You should express both \mathcal{C} and \mathcal{D} as classes, and then that they are proper.)

1. $C = \{x | x = x\}$

Proof. Assume C is a set. Then $C \in C$. But this contradicts the Axiom of Foundation because $C \cap \{C\}$ is nonempty. \Box

Alternative proof:

Proof. Then by the Axiom of Separation, we can predicate on \mathcal{C} and form the subset $\{x \in \mathcal{C} | x \notin x\} = \mathcal{R} \subseteq \mathcal{C}$. But we have already established that \mathcal{R} is not a set. \Box

2. $\mathcal{D} = \{x | \exists y \forall z (z \in x \iff z = y)\}$

Proof. Assume \mathcal{D} is a set. Then $\{\mathcal{D}\} \in \mathcal{D}$. By the Axiom of Pairing, $y = \{\mathcal{D}, \{\mathcal{D}\}\}$ is a set. But then $\{\mathcal{D}\} \in \mathcal{D} \cap y$ and $\mathcal{D} \in \{\mathcal{D}\} \cap y$, which contradicts the Axiom of Foundation.