## Practice.

This exercise helps to understand how Cartesian planes satisfy congruence axioms for angles.



Task: Find the equation of the dashed line, which is meant to form an angle of $\alpha$ with the solid line.

Since the point $(1,1)$ lies on the dashed line, the point-slope equation for the line is $y-1=m(x-1)$, where $m$ is the slope (equivalently the tangent of the angle the dashed line makes where it cuts the $x$-axis). So the problem is to find this tangent.

Let $\beta$ be the angle by which the line $x+y-2=0$ cuts the the $x$-axis. Since this line has slope $-1, \tan (\beta)=-1$. From the left hand figure, $\tan (\alpha)=\frac{1}{3}$. The dashed line cuts the $x$-axis with an angle of $\gamma=\alpha+\beta$, so

$$
\tan (\gamma)=\tan (\alpha+\beta)=\frac{\tan (\alpha)+\tan (\beta)}{1-\tan (\alpha) \tan (\beta)}=\frac{\left(\frac{1}{3}\right)+(-1)}{1-\left(\frac{1}{3}\right)(-1)}=\frac{-\frac{2}{3}}{\frac{4}{3}}=-\frac{1}{2} .
$$

Thus $m=-\frac{1}{2}$, which shows that the desired equation is $y-1=-\frac{1}{2}(x-1)$. This can be scaled and rewritten as $x+2 y-3=0$.

