Alternative axioms related to Playfair's Postulate.

Definition 1. Let Π be a Hilbert plane (meaning a plane satisfying I1-3, B1-4, C1-6). We call Π
(1) semi-Euclidean if triangle sums are $=2$ RA,
(2) semi-hyperbolic if triangle sums are <2 RA,
(3) semi-elliptic if triangle sums are >2 RA.

You will find in Theorem 34.7 a proof that if one triangle has angle sum $=2$ RA $(<2 R A,>$ 2RA), then all do. Computing an angle sum is a local way to determine approximately how close Euclidean the plane is.

The defect of triangle $\triangle A B C$ is 2RA - (angle sum). Thus semi-Euclidean planes have triangles of defect 0 , while semi-hyperbolic planes have triangles of positive defect.

Alternative axioms related to (P):
(1) (Archimedes Axiom) If $\overline{A B}$ and $\overline{C D}$ are segments, then there is an integer n such that $n \cdot \overline{A B}>\overline{C D}$.
(2) (Aristotle's Axiom) If $\angle A B C$ is an angle and $\overline{D E}$ is a segment, then there is a point F on $\overrightarrow{A B}$ such that, if G is the foot of the projection of F onto $A C$, we have $\overline{F G}>\overline{D E}$.
(3) (Clavius's Axiom) Given line ℓ and point A not on ℓ, the equidistant locus to ℓ through P is a line.
(4) (Wallis's Axiom) Given triangle $\triangle A B C$ and segment $A^{\prime} B^{\prime}$, there is a C^{\prime} such that corresponding angles in the triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are congruent.
(5) (Dedekind's Completeness Axiom) Every "Dedekind cut" is "defined by a point". Here a Dedekind cut is a partition $\{X, Y\}$ of the points incident to some line into two nonempty convex subsets. A Dedekind cut $\{X, Y\}$ is determined by a point A if one of the sets X, Y is the set of all points on ℓ on one side of A, and the other set is A together with all points on the other side. (See page 115.)
(6) (Existence of Limiting Parallels) Let ℓ be a line, A a point not on ℓ, and m be the line through A that meets ℓ at B in a right angle. A limiting parallel (page 312) is a ray $\overrightarrow{A C}$ which does not meet ℓ, but any ray $\overrightarrow{A D}$ with D interior to $\angle B A C$ meets ℓ.

Some Examples:

(1) The Cartesian plane over \mathbb{R} is semi-Euclidean and satisfies all of these axioms.
(2) The Dehn plane ($=$ the Cartesian plane over the ring of bounded elements of a nonArchimedean ordered field) is semi-Euclidean and satisfies Clavius's Axiom, but fails all of the rest of these axioms.

Some Relationships:

(1) A Hilbert plane satisfies Clavius's Axiom iff it is semi-Euclidean iff rectangles exist.
(2) A Hilbert plane satisfies Playfair's Postulate iff it satisfies Wallis's Axiom iff it is Archimedean and semi-Euclidean.
(3) Dedekind's Axiom implies the existence of limiting parallels.
(4) The Cartesian plane over a Euclidean field satisfies Archimedes Axiom iff the field is isomorphic to a subfield of \mathbb{R}. The plane satisfies Dedekind's Axiom iff the field is isomorphic to \mathbb{R} itself.

