Euclidean and Non-Euclidean Geometry (MATH 3210): some review problems

- (1) How do you define points, line, incidence, betweenness and congruence in a Cartesian plane?
- (2) Find one of Hilbert's axioms that fails in the Cartesian plane over the field of rational numbers.
- (3) Explain why $\sqrt[3]{2}$ is not a constructible number.
- (4) Show that $\sqrt[4]{2} \in K$, but $\sqrt[4]{2} \notin \Omega$.
- (5) Which of the following straightedge and compass construction problems are solvable?(a) Cubing the sphere? (The 3-dimensional version of squaring the circle.)
 - (b) Doubling the 4-dimensional cube? (That is, given the side length of a 4-dimensional cube, construct the side length of a 4-dimensional cube of twice the volume.)
 - (c) Constructing a regular 30-gon?
 - (d) Constructing a golden rectangle? (That is, an $a \times b$ -rectangle where (a+b)/a = a/b.)
- (6) Let Π be the Dehn plane. Explain why Playfair's postulate fails for every choice of a line ℓ and a point A not on ℓ . (That is, show that given any ℓ and A with A not on ℓ , there are multiple parallels to ℓ through A.)
- (7) What is the definition of "complete ordered field"? Why must a complete ordered field be Archimedean?
- (8) How do you define points, line, incidence, betweenness and congruence in the Poincare disk model?
- (9) Explain how to construct limiting parallels in the Poincare disk model. Explain why the Dehn plane does not have limiting parallels.
- (10) Explain why the hyperbolic center of a circle in the Poincare model is not the same as the Cartesian center.