## Geometry <br> Quiz 6

## Name:

You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be complete, legible and correct. Show your work, and give adequate explanations.

Please read the following Theorem and "Proof".
Theorem. If $\ell$ and $m$ are parallel, then all points of $\ell$ lie on the same side of $m$.
"Proof". Assume that $\ell$ and $m$ are not parallel. Let $A$ be a point incident to both lines. By $I 2$, there is point $B \neq A$ also on $\ell$. By $B 2$, there is a point $C$ such that $B * A * C$. Now $B$ and $C$ are on $\ell$, but are not on the
 same side of $m$.
(1) Explain why the "proof" does not prove the theorem.

The Theorem statement has the form $A \rightarrow B$ where $A$ is " $\ell$ and $m$ are parallel" and $B$ is "all points of $\ell$ lie on the same side of $m$ ". The proof (correctly) argues that $(\neg A) \rightarrow(\neg B)$, which is the inverse statement. Typically statements are not equivalent to their inverses, so the proof does not establish the Theorem.
(2) Give a correct proof.

This is a proof by contradiction, so assume that $\ell$ and $m$ are parallel, but that there are points $A \neq B$ that are not on the same side of $m$. Neither $A$ nor $B$ lies on $m$, since $\ell$ and $m$ have no common points, so $A$ and $B$ lie on opposite sides of $m$. This means that there is a point $C$ incident to $m$ such that $A * C * B$ holds. Now $B 1$ implies that $C$ is on $\ell$, so it is a point common to $\ell$ and $m$. This contradicts the assumption that $\ell$ and $m$ are parallel.

