
The Hilbert Field.

Thm.

(1) R is a Pythagorean ordered field (POF).
(2) The intersection of any collection of Pythagorean ordered subfields of R is also a

POF.

(The intersection of all Pythagorean ordered subfields of R is called the Hilbert field,
Ω.)

Sketch of Proof of Item (2). Assume that P = {R,S,T, . . .} is a collection of POF-
substructures of R, and that I is the intersection. We have to show that I is a POF-
substructure. This requires showing that I contains 0, 1, and I is closed under the field
operations, and that I is closed under the Pythagorean operation: p(x, y) = +

√
x2 + y2. All

arguments are based on the same idea, so I will just explain why (i) 0 ∈ I and why (ii) I is
closed under +.

For (i), note that every element of the collection P is a POF-substructure of R, so every
one contains 0, so the intersection, I, also contains 0.

For (ii), we choose a, b ∈ I and argue that a + b ∈ I. Since a, b ∈ I, both a and b belong
to every POF in P . Hence a+ b ∈ R also belongs to every POF in P . Hence a+ b belongs
to the intersection I of the structures in P . 2.

It is easy to construct some elements of the Hilbert field Ω:

(1) Ω is closed under +,−, 0, 1, so Z ⊆ Ω.
(2) Ω is closed under multiplication and inversion of nonzero elements, so Q ⊆ Ω.
(3) By using the Pythagorean operation you can show that some irrational numbers

belong to Ω: p(1, 1) =
√

12 + 12 =
√

2 ∈ Ω. p(1,
√

2) =
√

3 ∈ Ω.

Question. Are the following in Ω:
√

1 +
√

2?

√
7 + 2

√
5 +
√

6? 3
√

2? π?

The answer to this question is complicated by the fact that some numbers are expressible

in multiple ways. For example,
√

2+
√

3 =
√

5 +
√

6, and 3
√

2 +
√
−121+ 3

√
2−
√
−121 = 4.

This means that it is hard to tell if a number belongs to Ω just by looking at it.
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Algebraic conjugates.

An automorphism of a field F = 〈F ; +,−, 0, ·1〉 is an invertible homomorphism from
the field to itself, α : F→ F. This means that the following hold:

(1) α is a 1-1 and onto function from F to itself.
(2) α(x+ y) = α(x) + α(y), α(x · y) = α(x) · α(y), α(−x) = −α(x), α(0) = 0, α(1) = 1.

For example, complex conjugation α(a + bi) = a − bi is a function α : C → C that is an
automorphism of the field of complex numbers.

An element of the complex numbers is algebraic if it is a root of a nonzero rational
polynomial. Otherwise it is transcendental. If z is an algebraic complex number, then
its minimal polynomial is the least degree monic rational polynomial that it satisfies.
Two complex numbers z, w ∈ C are algebraic conjugates if there is an automorphism
α : C → C such that α(z) = w. It is a theorem that two algebraic numbers are algebraic
conjugates iff their minimal polynomials are equal. A complex number is totally real if all
of its algebraic conjugates are real.

Thm. Any element of Ω

(1) is algebraic,
(2) has minimal polynomial whose degree is a power of two, and
(3) is totally real.

Now let’s return to:

Question. Are the following in Ω:
√

1 +
√

2?

√
7 + 2

√
5 +
√

6? 3
√

2? π?


