The Hilbert Field.

Thm.

(1) \mathbb{R} is a Pythagorean ordered field (POF).
(2) The intersection of any collection of Pythagorean ordered subfields of \mathbb{R} is also a POF.
(The intersection of all Pythagorean ordered subfields of \mathbb{R} is called the Hilbert field, Ω.)

Sketch of Proof of Item (2). Assume that $\mathcal{P}=\{\mathbb{R}, \mathbb{S}, \mathbb{T}, \ldots\}$ is a collection of POFsubstructures of \mathbb{R}, and that \mathbb{I} is the intersection. We have to show that \mathbb{I} is a POFsubstructure. This requires showing that \mathbb{I} contains 0,1 , and \mathbb{I} is closed under the field operations, and that \mathbb{I} is closed under the Pythagorean operation: $p(x, y)=+\sqrt{x^{2}+y^{2}}$. All arguments are based on the same idea, so I will just explain why (i) $0 \in \mathbb{I}$ and why (ii) \mathbb{I} is closed under + .

For (i), note that every element of the collection \mathcal{P} is a POF-substructure of \mathbb{R}, so every one contains 0 , so the intersection, \mathbb{I}, also contains 0 .

For (ii), we choose $a, b \in \mathbb{I}$ and argue that $a+b \in \mathbb{I}$. Since $a, b \in \mathbb{I}$, both a and b belong to every POF in \mathcal{P}. Hence $a+b \in \mathbb{R}$ also belongs to every POF in \mathcal{P}. Hence $a+b$ belongs to the intersection \mathbb{I} of the structures in \mathcal{P}. \square.

It is easy to construct some elements of the Hilbert field Ω :
(1) Ω is closed under $+,-, 0,1$, so $\mathbb{Z} \subseteq \Omega$.
(2) Ω is closed under multiplication and inversion of nonzero elements, so $\mathbb{Q} \subseteq \Omega$.
(3) By using the Pythagorean operation you can show that some irrational numbers belong to Ω : $p(1,1)=\sqrt{1^{2}+1^{2}}=\sqrt{2} \in \Omega . p(1, \sqrt{2})=\sqrt{3} \in \Omega$.

Question. Are the following in $\Omega: \sqrt{1+\sqrt{2}} ? \sqrt{7+2 \sqrt{5+\sqrt{6}}} ? \sqrt[3]{2} ? \pi$?
The answer to this question is complicated by the fact that some numbers are expressible in multiple ways. For example, $\sqrt{2}+\sqrt{3}=\sqrt{5+\sqrt{6}}$, and $\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}=4$. This means that it is hard to tell if a number belongs to Ω just by looking at it.

Algebraic conjugates.

An automorphism of a field $\mathbb{F}=\langle F ;+,-, 0, \cdot 1\rangle$ is an invertible homomorphism from the field to itself, $\alpha: \mathbb{F} \rightarrow \mathbb{F}$. This means that the following hold:
(1) α is a $1-1$ and onto function from \mathbb{F} to itself.
(2) $\alpha(x+y)=\alpha(x)+\alpha(y), \alpha(x \cdot y)=\alpha(x) \cdot \alpha(y), \alpha(-x)=-\alpha(x), \alpha(0)=0, \alpha(1)=1$. For example, complex conjugation $\alpha(a+b i)=a-b i$ is a function $\alpha: \mathbb{C} \rightarrow \mathbb{C}$ that is an automorphism of the field of complex numbers.

An element of the complex numbers is algebraic if it is a root of a nonzero rational polynomial. Otherwise it is transcendental. If z is an algebraic complex number, then its minimal polynomial is the least degree monic rational polynomial that it satisfies. Two complex numbers $z, w \in \mathbb{C}$ are algebraic conjugates if there is an automorphism $\alpha: \mathbb{C} \rightarrow \mathbb{C}$ such that $\alpha(z)=w$. It is a theorem that two algebraic numbers are algebraic conjugates iff their minimal polynomials are equal. A complex number is totally real if all of its algebraic conjugates are real.

Thm. Any element of Ω
(1) is algebraic,
(2) has minimal polynomial whose degree is a power of two, and
(3) is totally real.

Now let's return to:
Question. Are the following in $\Omega: \sqrt{1+\sqrt{2}} ? \sqrt{7+2 \sqrt{5+\sqrt{6}}} ? \sqrt[3]{2} ? \pi$?

