Ordered Fields.

Definition 1. A field is an algebraic structure $\mathbb{F}=\langle F ;+,-, 0, \cdot, 1\rangle$ which satisfies the following
(1) Additive laws ${ }^{1}$:
(a) (Associative law) $\forall x \forall y \forall z((x+(y+z))=((x+y)+z))$.
(b) (Commutative law) $\forall x \forall y(x+y=y+x)$.
(c) (Unit law) $\forall x(x+0=x)$
(d) (Inverse law) $\forall x(x+(-x)=0)$
(2) Multiplicative laws:
(a) (Associative law) $\forall x \forall y \forall z((x(y z))=((x y) z))$.
(b) (Commutative law) $\forall x \forall y(x y=y x)$.
(c) (Unit law) $\forall x(x 1=x)$
(3) Law linking addition to multiplication:
(a) (Distributive law): $\forall x \forall y \forall z(x(y+z)=x y+x z)$.
(4) Other defining properties that are not laws:
(a) $0 \neq 1$.
(b) $\forall x((\neq(x=0)) \rightarrow \exists y(x y=1))$.

If you know the definition of "abelian group", the axioms for fields say that \mathbb{F} is additively an abelian group, $\mathbb{F}-\{0\}$ is multiplicatively an abelian group, and the additive and multiplicative structures are linked by the distributive law.

Examples. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / p \mathbb{Z}$ (p prime).
Nonexamples. $\mathbb{N}, \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}$ (n not a prime).

Definition 2. An ordered field is a structure $\mathbb{F}=\langle F ;+,-, 0, \cdot, 1, \leq\rangle$ where
(1) $\langle F ;+,-, 0, \cdot, 1\rangle$ is a field,
(2) $\langle F ; \leq\rangle$ is a totally ordered set (which means that \leq is a reflexive, antisymmetric, transitive relation satisfying the trichotomy law),
(3) (Order structure is linked to field structure):
(a) (Additive compatibility) $\forall x \forall y \forall z((y \leq z) \rightarrow(x+y \leq x+z))$
(b) (Multiplicative compatibility) $\forall x \forall y \forall z(((y \leq z) \wedge(0 \leq x)) \rightarrow(x y \leq x z))$

If \mathbb{F} is an ordered field, then an element p is positive if $0 \leq p$ and $0 \neq p$ (we just abbreviate this with $0<p$). The set P of all positive elements is called the positive cone. An element in $-P=\{-x \mid x \in P\}$ is called negative.

Examples. \mathbb{Q}, \mathbb{R}.
Nonexamples. $\mathbb{C}, \mathbb{Z} / n \mathbb{Z}$ for any n.

[^0]Question: Why is impossible to order \mathbb{C} to make it an ordered field?
Thm. If \mathbb{F} is an order field with positive cone P, then the following are true.
(1) (Can use $<$ in place of \leq)
(a) $\forall x \forall y \forall z((y<z) \rightarrow(x+y<x+z))$
(b) $\forall x \forall y \forall z(((y<z) \wedge(0<x)) \rightarrow(x y<x z))$
(2) \mathbb{F} is the disjoint union $P \cup\{0\} \cup-P$.
(3) The positive cone of \mathbb{F} is closed under addition and multiplication.
(4) For any $a \in F-\{0\}, a^{2}$ is positive.

Proof.

I prove (1)(a) and leave (1)(b) as an exercise. Choose arbitrary field elements a, b, c and assume that $b<c$. We want to prove that $a+b<a+c$. Since $b<c$, we have $b \leq c$, so $a+b \leq a+c$ by (3)(a) of the definition of ordered fields. To show that $a+b<a+c$ holds we must rule out the possibility that $a+b=a+c$. For the purpose of obtaining a contradiction, assume that we do have $a+b=a+c$. Then using the field laws we deduce in order that

$$
\begin{aligned}
(-a)+(a+b) & =(-a)+(a+c) \\
((-a)+a)+b) & =((-a)+a)+c), \\
((a+(-a))+b) & =((a+(-a))+c), \\
(0+b) & =(0+c), \\
(b+0) & =(c+0), \\
b & =c,
\end{aligned}
$$

which is false. This contradiction shows that $\neg(a+b=a+c)$, so with our earlier conclusion (that $a+b \leq a+c$) we get $a+b<a+c$.

Item (2) follows from the law of trichotomy. (For every x, exactly one of the following is true: $0<x, 0=x$, or $x<0$. In the first case, $x \in P$; in the second, $x=\{0\}$; in the third, add $-x$ ro both sides of $x<0$ to obtain $0<-x$, so $-x \in P$, so $x \in-P$.)

Item (3) follows from Item (1) by letting y be 0 and x be positive.
For Item (4), choose any $a \in F-\{0\}$. By Item (2), either $a \in P$ or $a \in-P$ (equivalently $-a \in P)$. Therefore one of a^{2} or the equal value $(-a)^{2}$ is the square of a positive element. By Item (3) we get $a^{2}=(-a)^{2} \in P$.

Cor. If \mathbb{F} is a field in which -1 is a sum of squares, then \mathbb{F} is not orderable.
Proof. Any nonzero sum of squares, such as $1=1^{2}$, belongs to P. Hence $-1 \in-P$. Since P contains all sums of squares, $-P$ contains -1 , and $P \cap-P=\emptyset$, we get that -1 cannot be a sum of squares.

Cor. The fields \mathbb{C} and $\mathbb{Z} / p \mathbb{Z}$ are not orderable.
Proof. In these fields, -1 is a sum of squares.
For $\mathbb{C},-1$ is already a square.
For $\mathbb{Z} / p \mathbb{Z}, 1$ is a square, so $1+1=2$ is a sum of squares, and $1+1+1=3$ is a sum of squares, ETC. Thus every element of $\mathbb{Z} / p \mathbb{Z}$ is a sum of squares.

[^0]: ${ }^{1}$ A law or identity is a universally quantified equation.

