(Non-)Archimedean fields.

Let \mathbb{F} be an ordered field. For $a, b \in \mathbb{F}$, the interval $[a, b]$ is the set $\{x \in \mathbb{F} \mid a \leq x \leq b\}$.
Theorem 1. The following are equivalent for an ordered field \mathbb{F}.
(1) $F=\bigcup_{n=1}^{\infty}[-n, n]$
(2) There is no element $t \in F$ such that $n<t$ for every positive integer n.
(3) There is no $u \in F$ such that $0<u<1 / n$ holds for every positive integer n.
\mathbb{F} is Archimedean is it satisfies these properties, otherwise it is non-Archimedean. An element t satisfying the condition in Item (2) is called an infinitely large element. An element u satisfying the condition in Item (2) is called an infinitely small element.

Any ordered subfield of the real numbers, like $\mathbb{Q}, \Omega, K, \mathbb{R}$, is Archimedean.

Non-Archimedean fields exist.

Let \mathbb{F} be any ordered field. The set of rational functions over \mathbb{F},

$$
\mathbb{F}(t)=\left\{\left.\frac{p(t)}{q(t)} \right\rvert\, p, q \text { are polynomials over } \mathbb{F} \text { in the variable } t, q \neq 0\right\}
$$

can be made into a non-Archimedean ordered field. By adjusting the signs in the numerator and denominator of a fraction we can write a typical element of $\mathbb{F}(t)$

$$
\frac{p(t)}{q(t)}=\frac{a_{m} t^{m}+\cdots+a_{1} t+a_{0}}{b_{n} t^{n}+\cdots+b_{1} t+b_{0}}
$$

with $b_{n}>0$.
(1) $0(t)$ is the zero function.
(2) $1(t)$ is the conszero function.ant function with value 1 .
(3) $\frac{p(t)}{q(t)}+\frac{r(t)}{s(t)}=\frac{p(t) s(t)+q(t) r(t)}{q(t) s(t)}$.
(4) $-\frac{p(t)}{q(t)}=\frac{-p(t)}{q(t)}$.
(5) $\frac{p(t)}{q(t)} \cdot \frac{r(t)}{s(t)}=\frac{p(t) r(t)}{q(t) s(t)}$.
(6) If $\frac{p(t)}{q(t)} \neq 0(t)$ (so $p(t) \neq 0(t)$), then $\left(\frac{p(t)}{q(t)}\right)^{-1}=\frac{q(t)}{p(t)}$. (Might have to adjust the sign of the denominator.)
(7) $\frac{p(t)}{q(t)}$ is positive if the leading coefficient of $p(t)$ is positive.
(8) $\frac{r(t)}{s(t)}<\frac{r(t)}{s(t)}$ iff $\frac{r(t)}{s(t)}-\frac{p(t)}{q(t)}$ is positive.
$\mathbb{F}(t)$, with this ordering, is an ordered field. The element t is infinitely large in $\mathbb{F}(t)$. The element $1 / t$ is infinitely small but positive in $\mathbb{F}(t)$.

