Homework 1

Mohammad Ozaslan
Euclidean and Noneuclidean Geometry
February 1, 2017

Section 2

2.8. Given a circle with center O and a point A outside the circle. Choose B on $\odot O$ at random.

1. Draw $\odot B O$.
2. Construct and extend $B O$, get C.
3. Construct $\odot O C$.
4. Construct $\odot A O$, get D.
5. Draw $D O$, get E.
6. Draw a tangent line $A E$, or ℓ.

Section 6

6.1. Let $\mathscr{P}=\{A, B, C, D\}, \mathscr{L}_{1}=\{\ell, m, n, p, q, r\}$, and $\mathscr{L}_{2}=\{\ell, m, n, p\}$.

Let $I_{1}=\{(A, \ell),(A, q),(A, p),(B, \ell),(B, r),(B, m),(C, m),(C, q),(C, n)$, $(D, n),(D, r),(D, p)\}$ and let $I_{2}=\{(A, \ell),(A, p),(A, n),(B, \ell),(B, m),(C, m)$, $(C, p),(D, m),(D, n)\}$.

Then, $\Pi_{1}=\left\langle\mathscr{P}, \mathscr{L}_{1} \mid I_{1}\right\rangle$ and $\Pi_{2}=\left\langle\mathscr{P}, \mathscr{L}_{2} \mid I_{2}\right\rangle$ are the only incidence geometries (up to isomorphism) with four points, and are modeled below:
$\Pi_{1}:$

$\Pi_{2}:$

Π_{1} and Π_{2} both satisfy (P).
6.3. A projective plane is a set of points and subsets called lines that satisfy the following four axioms:
P1. Any two distinct points lie on a unique line.
P2. Any two lines meet in at least one point.
P3. Every line contains at least three points.
$\mathbf{P 4}$. There exist three noncollinear points.
(c) The axioms (P1), (P2), (P3), (P4) are independent.

Proof.
$(P 1 \wedge P 2 \wedge P 3 \wedge \neg P 4)$
Let $\mathscr{P}=\{A\}$, and let $\mathscr{L}=\varnothing=I$.
Then, $\Pi=\langle\mathscr{P}, \mathscr{L} \mid I\rangle$ is a plane satisfying all of the axioms above except P 4 :
${ }^{\circ} A$
$(P 1 \wedge P 2 \wedge \neg P 3 \wedge P 4)$
Let $\mathscr{P}=\{A, B, C\}$, and $\mathscr{L}=\{\ell, m, n\}$.
Then, let $I=\{(A, \ell),(A, n),(B, \ell),(B, m),(C, m),(C, n)\}$.
Thus, $\Pi=\langle\mathscr{P}, \mathscr{L} \mid I\rangle$ is a plane satisfying all of the axioms above except P3:

$(P 1 \wedge \neg P 2 \wedge P 3 \wedge P 4)$
Let $\mathscr{P}=\{A, B, C, D, E, F\}$, and $\mathscr{L}=\{\ell, m, p, q\}$.
Then, let $I=\{(A, \ell),(B, \ell),(C, \ell),(D, m),(E, m),(F, m),(G, n),(G, p),(G, q)$ $(A, n),(B, p),(C, q),(D, q),(E, p),(F, n)\}$.

Thus, $\Pi=\langle\mathscr{P}, \mathscr{L} \mid I\rangle$ is a plane satisfying all of the axioms above except P 2 :

$(\neg P 1 \wedge P 2 \wedge P 3 \wedge P 4)$
Let $\mathscr{P}=\{A, B, C\}$ and $\mathscr{L}=I=\varnothing$.
Then, $\Pi=\langle\mathscr{P}, \mathscr{L} \mid I\rangle$ is a plane satisfying all of the axioms above except for P 1 :

We have shown that any three statements do not necessarily imply the fourth. Thus, all of these axioms are independent.

