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Abstract

We show that a locally finite variety which omits abelian types is
self–rectangulating if and only if it has a compatible semilattice term
operation. Such varieties must have type–set {5 }. These varieties are
residually small and, when they are finitely generated, they have de-
finable principal congruences. We show that idempotent varieties with
a compatible semilattice term operation have the congruence extension
property.

1 Introduction

In 1986, while investigating residually small varieties generated by a finite
algebra, R. McKenzie discovered a property associated to nonabelian prime
congruence quotients in members of such varieties which has become known as
“rectangulation modulo a gene”; here a “gene” is a configuration of elements
and polynomial operations associated to the nonabelian prime congruence quo-
tient in question. Using this property McKenzie showed that whenever A is
an algebra of size n < ω and V = V(A) is residually small, then every finite
subdirectly irreducible algebra in V which has nonabelian monolith has a tol-
erance τ with no more than n tolerance blocks such that τ rectangulates itself
modulo the gene associated with the monolith of the subdirectly irreducible.
Since then McKenzie has used this result to characterize which locally finite
varieties omitting abelian congruence quotients are residually small.

The rectangulation property is analyzed in [4] in a form where it is not
localized to genes. There this property is shown to be a natural term condi-
tion which has a useful associated commutator operation. Finite “rectangular
algebras”, that is, finite algebras which are abelian with respect to this com-
mutator, seem to be the nicest kinds of algebras among those which have a
bound on the essential arity of their term operations. It turns out that this
“global” rectangulation property is incompatible with the existence of genes,
at least to the extent that no gene exists in a rectangular algebra. Hence “rect-
angulation modulo a gene” is a less restrictive notion than the rectangulation
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property from [4]. For binary relations R and S on an algebra, the fact that
R and S rectangulate one another modulo a gene G means roughly that, from
the viewpoint of the gene G, the relations R and S “communicate with each
other” in a rectangular way only.

In this paper we consider locally finite varieties of algebras where each
finite member has the property that the total binary relation rectangulates
itself modulo all genes associated to nonabelian prime congruence quotients.
We will find that if in such a variety every nontrivial congruence quotient is
nonabelian then the variety must have type–set {5 }. Therefore we call these
varieties self–rectangulating varieties of type–set {5 }. The main result of this
paper is an analogue of Herrmann’s Theorem from modular commutator the-
ory: we show that a locally finite variety of type–set {5 } is self–rectangulating
if and only if it has a semilattice term which commutes with all other term
operations. The remainder of the paper is concerned with special properties
of self–rectangulating varieties of type–set {5 } (e.g., definable principal con-
gruences, residual smallness, finite axiomatizability) with some emphasis on
idempotent varieties.

2 Self–Rectangulation

The set of idempotent unary polynomial operations of an algebra A will be
denoted by E(A). If A is an algebra, e ∈ E(A) and 1 ∈ e(A) is a fixed
element, then we define a relation v on A as follows. We say that a v b if and
only if

ef(a) = 1 =⇒ ef(b) = 1

for all f ∈ Pol 1(A). It is straightforward to check that v is a reflexive,
transitive, compatible binary relation on A, therefore it will be called the
natural quasiorder of A with respect to (e, 1).

It follows that for every natural quasiorder v as above, δ = v ∩ v∪ is a
congruence of A. Since (a, b) ∈ δ if and only if

ef(a) = 1⇐⇒ ef(b) = 1

for all f ∈ Pol 1(A), δ must be the largest congruence on A whose restriction
δ|e(A) to the set e(A) has {1} as a singleton class.

Now we give McKenzie’s definition of “gene” and follow it with his defini-
tion of what it means for two relations to “rectangulate one another modulo
a gene”.

Definition 2.1 Let A be an algebra and suppose that 0, 1 ∈ A, e(x) ∈ E(A),
x u y is a binary polynomial operation of A and ρ is a congruence of A. We
say that (e,u, 0, 1, ρ) is a gene of A if the following conditions hold:

(g1) e(0) = 0 6= 1 = e(1);
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(g2) ρ is the largest congruence of A such that ρ|e(A) has {1} as a singleton
class;

(g3) e(A) is closed under u, and for all x ∈ e(A) we have x u x = x and
x u 1 = x = 1 u x;

(g4) if a ∈ e(A)− {1}, then a is ρ–related to both a u 0 and 0 u a.

There is a natural quasiorder corresponding to every gene G = (e,u, 0, 1, ρ)
of A, namely the natural quasiorder v with respect to (e, 1). Notice that in
this case we have ρ = v∩v∪, which is easily seen by comparing (g2) and the
property of the congruence δ = v∩v∪ established right before Definition 2.1.
Furthermore, the presence of the polynomial u implies that within the set e(A)
the element 1 is maximal with respect to v. Indeed, if u ∈ e(A) and u 6= 1
then for the unary polynomial f(x) = x u 1 we have ef(1) = e(1 u 1) = 1 and
ef(u) = e(u u 1) = u, hence 1 6v u, as required.

Let G = (e,u, 0, 1, ρ) and G = (e′,u′, 0′, 1′, ρ′) be arbitrary genes of an
algebra A. We will call G and G′ equivalent if they have the same associated
natural quasiorder. Clearly, if G and G′ are equivalent then ρ = ρ′. An easy
sufficient condition for G and G′ to be equivalent is that e(A) = e′(A) and
1 = 1′; or more generally, that there is a polynomial isomorphism between
e(A) and e′(A) which maps 1 to 1′.

Definition 2.2 Let G = (e,u, 0, 1, ρ) be a gene of an algebra A. Let R, S be
binary relations over A. We say that R and S rectangulate one another
modulo G provided that whenever p(x,y) ∈ Pol m+n(A), a R b and c S d
we have

ep(a, c) = 1 = ep(b,d) =⇒ ep(a,d) = 1 = ep(b, c).

Later on, implications of the type displayed in the previous definition will
usually be applied to equal relations R = S. Therefore for clarity we may
underline arguments to indicate how we are applying the rule, as in

ep(a, c) = 1 = ep(b,d) =⇒ 1 = ep(a,d).

From the point of view of rectangulation equivalent genes can be consid-
ered the same. By this we mean that if the genes G = (e,u, 0, 1, ρ) and
G′ = (e′,u′, 0′, 1′, ρ′) of an algebra A are equivalent then for any binary rela-
tions R, S on A, R and S rectangulate one another modulo G if and only if
they rectangulate one another modulo G′. To show this claim assume that G
and G′ have the same natural quasiorder v and that R and S rectangulate
one another modulo G′. Let p, a,b, c,d be as in Definition 2.2 and assume
that ep(a, c) = 1 = ep(b,d). For any f ∈ Pol1 A with e′f(1) = 1′ the rectan-
gulation property modulo G′, when applied to e′fep(a, c) = 1′ = e′fep(b,d)
yields that e′fep(a,d) = 1′ = e′fep(b, c). Thus 1 v ep(a,d) and 1 v ep(b, c)
with respect to G′. But all three elements appearing here belong to e(A) and
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on this set 1 is maximal with respect to v. Therefore ep(a,d) = 1 = ep(b, c).
A similar argument with the roles of G and G′ switched completes the proof.

It is a consequence of tame congruence theory that to every nonabelian
prime congruence quotient 〈α, β〉 on a finite algebra A there is an associated
gene, called an 〈α, β〉–gene, which is uniquely determined, up to equivalence.
This gene is defined as follows. Let U be an 〈α, β〉–minimal set, let e ∈ E(A) be
such that e(A) = U , let xu y be a binary polynomial of A which is a pseudo–
meet operation of A|U , let 1 ∈ U be the unit element of this pseudo–meet
operation, let ρ be the pseudo–complement of β over α, and let 0 ∈ U − {1}
be any element which is ρ–related to an element in the 〈α, β〉–body of U .
Then (e,u, 0, 1, ρ) is a gene of A. Furthermore, any two genes (e,u, 0, 1, ρ)
and (e′,u′, 0′, 1′, ρ′) constructed in this way are equivalent; in fact, there is a
polynomial isomorphism between e(A) and e′(A) which sends 1 to 1′. These
claims can be proved from the material in Chapters 2, 4 and 5 of [2], especially
the material on pages 29, 56–58 and 81. We emphasize that we shall only refer
to an 〈α, β〉–gene when 〈α, β〉 is nonabelian.

The facts established in the preceding two paragraphs ensure that the
following definition is meaningful.

Definition 2.3 Let A be a finite algebra and 〈α, β〉 a nonabelian prime con-
gruence quotient of A. We will say that A rectangulates itself with respect
to 〈α, β〉 if the total binary relation T = A×A rectangulates itself modulo an
〈α, β〉–gene G. The natural quasiorder corresponding to G will be called the
natural quasiorder of A with respect to 〈α, β〉. We will use the phrase
A is self–rectangulating or A rectangulates itself to mean that A rect-
angulates itself with respect to every nonabelian prime congruence quotient.
Finally, a locally finite variety will be called self–rectangulating if every finite
member is.

In this paper we will mainly use self–rectangulation with respect to 〈0A, µ〉
where A is a subdirectly irreducible algebra with nonabelian monolith µ. If
G = (e,u, 0, 1, ρ) is a 〈0A, µ〉–gene then ρ = 0A, and hence the corresponding
natural quasiorder v is a partial order. Therefore in this case v will be called
the natural order of A with respect to 〈0A, µ〉.

Now we explain why the property of being self–rectangulating forces every
nonabelian prime quotient to be of type 5 . Let A be a finite algebra, let 〈α, β〉
be a nonabelian prime quotient of A, and assume that typ(α, β) ∈ {3 , 4 }. Let
G = (e,u, 0, 1, ρ) be an 〈α, β〉–gene defined on U = e(A), which is an 〈α, β〉–
minimal set. Choose a polynomial operation t which is an 〈α, β〉 pseudo–join
operation for A|U . Then the following displayed line proves that A does not
rectangulate itself with respect to 〈α, β〉:

e(0 t 1) = 1 = e(1 t 0) but e(0 t 0) = e(0) = 0.

We conclude that if all prime quotients of A are nonabelian and A is self–
rectangulating, then typ{A} = {5 }.
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Note that if A rectangulates itself with respect to a nonabelian prime quo-
tient 〈α, β〉 and δ ≤ α, then A/δ rectangulates itself with respect to 〈α/δ, β/δ〉.
This is a consequence of the fact that the δ|U–class of the element 1 is just
{1} when δ ≤ ρ. It follows that when a finite algebra A is self–rectangulating,
then every homomorphic image of A is also self–rectangulating.

Definition 2.4 If B is an algebra, then a compatible semilattice opera-
tion of B is an idempotent, commutative, associative binary operation ∧ on B
which is a homomorphism ∧ : B2 → B. If ∧ agrees with a term [polynomial]
operation of B, we call the term [polynomial] operation a compatible semi-
lattice term [polynomial] operation of B. A compatible semilattice term
operation of a variety V is a term operation which interprets as a compatible
semilattice operation in every member of V.

Note that a compatible semilattice operation ∧ of B is compatible with all
polynomial operations of B as well, since ∧ is idempotent.

LEMMA 2.5 If an algebra B has a compatible semilattice operation ∧, then
every semilattice polynomial operation of B coincides with ∧.

Proof. Let p be any binary, idempotent, commutative polynomial operation
of B. Then p commutes with ∧, so for any elements a, b ∈ B we have

p(a, b) = p(a, b) ∧ p(a, b)
= p(a, b) ∧ p(b, a)
= p(a ∧ b, b ∧ a)
= p(a ∧ b, a ∧ b)
= a ∧ b.

This proves the claim. 2

The following corollary is an immediate consequence.

COROLLARY 2.6 An algebra has at most one compatible semilattice poly-
nomial operation.

The next lemma describes a construction due to McKenzie, which is an
important step in finding a characterization for self–rectangulation. Let A be
an algebra and N any positive integer. In the algebra AN we let â denote
the constant function with range {a} for any a ∈ A. For any polynomial p ∈
Pol (A) we let p̂ denote the polynomial of AN which is p acting coordinatewise.

LEMMA 2.7 Let A be a finite subdirectly irreducible algebra with non-
abelian monolith µ. Consider a 〈0A, µ〉–gene G = (e,u, 0, 1, 0A) where U =
e(A) is a 〈0A, µ〉–minimal set. Furthermore, let N be a positive integer, let v
be the natural quasiorder of AN with respect to (ê, 1̂), and let δ = v∩v∪. If
A rectangulates itself with respect to 〈0A, µ〉, then the algebra AN/δ has the
following properties:
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(1) A can be embedded in AN/δ;

(2) AN/δ is subdirectly irreducible; and

(3) for sufficiently large N the algebra AN/δ has a compatible semilattice
operation.

Proof. It follows from the construction of G that the body of U is the set
{0, 1}. We may assume that e(x u y) = x u y.

First we prove (2). Since δ is the largest congruence on AN whose re-
striction to the set ê(AN ) = UN has {1̂} as a singleton class, we know that
(0̂, 1̂) 6∈ δ. We claim that δ∗ := Cg(δ ∪{(0̂, 1̂)}) is the unique upper cover of δ.

Choose any u,v ∈ AN such that (u,v) 6∈ δ. Then there is an f ∈ Pol 1(AN)
such that, say, êf(u) = 1̂ and êf(v) = r 6= 1̂. We shall argue that (r, r û 0̂) ∈ δ.
Then, since (1̂, r) ∈ Cg(u,v), and therefore (1̂ û 0̂, r û 0̂) ∈ Cg(u,v), we will
have that

1̂ Cg(u,v) r δ r û 0̂ Cg(u,v) 1̂ û 0̂ = 0̂

which tells us that (1̂, 0̂) ∈ δ ∨ Cg(u,v) whenever (u,v) 6∈ δ. This will prove
that δ∗ is not contained in δ but is contained in any congruence larger that δ.

Since r ∈ UN − {1̂}, we get that there is some coordinate i such that
ri ∈ U−{1}. Since xu0 = x for x ∈ U−{1}, we get that ri = riu0 = (r û 0̂)i.
That is, r and r û 0̂ agree in the i–th coordinate. Assume that for some
f ∈ Pol 1(AN) we have êf(r) = 1̂. We claim that êf(r û 0̂) = 1̂ as well. To see
this, first write f as

f(x) = ĝ(x,w1, . . . ,wk)

for some g ∈ Pol (A) and tuples wl ∈ AN (1 ≤ l ≤ k). Let wi denote the tuple
of i–th coordinates of the tuples w1, . . . ,wk. Thus in the i–th coordinate we
have

eg(ri u 0,wi) = eg(ri,wi) = (êf(r))i = (1̂)i = 1.

If j is any coordinate whatsoever, we have

eg(rj,wj) = (êf(r))j = (1̂)j = 1.

Therefore, using the fact that rj u 1 = rj, we may apply the rectangulation
condition to

eg(ri u 0,wi) = 1 = eg(rj,wj) = eg(rj u 1,wj)

to obtain that eg(rj u 0,wj) = 1 holds for all j. Hence êf(r û 0̂) = 1̂ as we
claimed. Therefore,

êf(r) = 1̂ =⇒ êf(r û 0̂) = 1̂

and so r v r û 0̂ in AN . The reverse inclusion is proved in exactly the same
fashion. This completes the proof that (r, r û 0̂) ∈ δ and therefore that δ∗

is the unique upper cover of δ. Thus B = AN/δ is a subdirectly irreducible
algebra in V(A).
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To verify (1) observe that the composition of the homomorphism ∆: A→
AN , x 7→ x̂ followed by the homomorphism η: AN → B, x 7→ x/δ is a
homomorphism from A to B. The monolith of A is Cg(0, 1) and

(η ◦∆)(0) = 0̂/δ 6= 1̂/δ = (η ◦∆)(1).

Hence η◦∆ is one–to–one and therefore an isomorphism of A onto a subalgebra
of B.

What remains to show is that for sufficiently large N , B has a compatible
semilattice operation. Let N ≥ 4|A|. For each a = (a1, . . . , aN) ∈ AN we
define a subset ran(a) ⊆ A as follows:

ran((a1, . . . , aN)) = {a1, . . . , aN}.

We argue now that if ran(a) ⊇ ran(b), then a v b in AN . Assume that
ran(a) ⊇ ran(b) and that for some f ∈ Pol 1(AN) we have êf(a) = 1̂. As
above, we may write f as

f(x) = ĝ(x,w1, . . . ,wk)

for some g ∈ Pol (A) and tuples wl ∈ AN (1 ≤ l ≤ k). Our goal is to prove
that

1̂ = êf(b) = êĝ(b,w1, . . . ,wk).

It suffices to show that in the i–th coordinate we have eg(bi,wi) = 1 for an
arbitrarily chosen i. For any coordinate i, we have bi ∈ ran(b) ⊆ ran(a), so
there is a j with aj = bi. Since êf(a) = 1̂, we have in the i–th and j–th
coordinates that

eg(ai,wi) = 1 = eg(aj,wj) = eg(bi,wj).

Using the rectangulation rule we get that eg(bi,wi) = 1 as we hoped. This
completes the proof that a v b. Note that this implies that if ran(a) = ran(b),
then (a,b) ∈ δ.

We describe an operation ∧ on B according to the following rule: For
a/δ,b/δ ∈ B we define

(a/δ) ∧ (b/δ) = (c/δ)

where c ∈ AN is any tuple for which ran(c) = ran(a) ∪ ran(b). There are
plenty of tuples c with this property since the number N ≥ 4|A| of coordinates
exceeds |A|. Our first task is to show that ∧ is well defined. Assume that
(a, a′), (b,b′) ∈ δ and that ran(c) = ran(a) ∪ ran(b) and ran(c′) = ran(a′) ∪
ran(b′). We shall argue that c v c′. Coupling this with an identical argument
with the roles of c and c′ switched proves that (c, c′) ∈ δ, so ∧ is well defined.
Since ran(c) ⊇ ran(a), ran(b) the result of the last paragraph shows that
c v a,b. Pick any f ∈ Pol 1(AN) such that êf(c) = 1̂. Since c v a,b we get
that êf(a) = êf(b) = 1̂, too. Since (a, a′), (b,b′) ∈ δ we get that êf(a′) =
êf(b′) = 1̂. As we have done twice before, write f(x) as ĝ(x,w1, . . . ,wk). To
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prove that êf(c′) = 1̂, which is our current goal, it suffices to prove that for
an arbitrarily chosen coordinate i we have eg(c′i,wi) = 1. Since

c′i ∈ ran(c′) = ran(a′) ∪ ran(b′)

there is some a′j or b′j equal to c′i. Assuming the former, we have

eg(c′i,wj) = eg(a′j,wj) = 1 = eg(a′i,wi)

which implies that eg(c′i,wi) = 1. This finishes the proof that c v c′ and also
the proof that ∧ is well defined.

That ∧ is idempotent, commutative and associative follows from the fact
that the operation of union has these properties.

What remains to show is that ∧ is a homomorphism from B2 to B. Let
t(x1, . . . , xm) be a basic operation of B. We must show that

t(a1/δ, . . . , am/δ) ∧ t(b1/δ, . . . ,bm/δ) = t(a1/δ ∧ b1/δ, . . . , am/δ ∧ bm/δ)

for any a1, . . . , am,b1, . . . ,bm ∈ AN . LetR = t(ran(a1), . . . , ran(am)) ⊆ A and
let S = t(ran(b1), . . . , ran(bm)) ⊆ A. Let Ω be the set of tuples in AN whose
first 2|A| components are from R and which exhaust R, and whose last 2|A|
components are from S and exhaust S. Since all p ∈ Ω have ran(p) = R ∪ S,
all members of Ω are δ–related. We claim first that t(a1, . . . , am) is δ–related
to a tuple a with ran(a) = R and that t(b1, . . . ,bm) is δ–related to a tuple
b with ran(b) = S. Once we prove this claim it will establish that the left
hand side of the previous displayed line equals p/δ for some (any) p ∈ Ω.
Afterwards we will prove that the right hand side has the same value. To
show that t(a1, . . . , am) is δ–related to a tuple a with ran(a) = R, we shall
argue that it is possible to alter each ai to a δ–related tuple a′i such that
ran(t(a′1, . . . , a

′
m)) = R. Enumerate R as (r1, . . . , rl). For j ranging from 1 to

l, choose a′ij ∈ ran(ai) so that t(a′1j , . . . , a
′
lj) = rj. For j ranging from l + 1 to

N , choose any a′ij ∈ ran(ai) so long as the choices for a fixed i include a full
list of all elements of ran(ai). There are enough coordinates to do this since
|A| ≤ N − l. We now have tuples a′i = (a′i1, . . . , a

′
iN) with ran(ai) = ran(a′i),

so (ai, a
′
i) ∈ δ, such that

t(a′1, . . . , a
′
m) = (r1, . . . , rl, . . .) =: a.

The left hand side of this display is δ–related to t(a1, . . . , am) while ran(a) = R.
This finishes the proof of our claim that

t(a1/δ, . . . , am/δ) ∧ t(b1/δ, . . . ,bm/δ) = p/δ

for some p ∈ Ω. Now we must show that

t(a1/δ ∧ b1/δ, . . . , am/δ ∧ bm/δ) = p/δ

for some p ∈ Ω. It is possible to construct c1, . . . , cm ∈ AN with the following
properties:
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(a) Each ci has its first 2|A| coordinates chosen so that they come from
ran(ai) and exhaust ran(ai).

(b) Each ci has its last 2|A| coordinates chosen so that they come from
ran(bi) and exhaust ran(bi).

(c) The coordinates of the tuples ci are arranged so that the first 2|A| co-
ordinate values of the tuple t(c1, . . . , cm) exhaust R and the last 2|A|
values exhaust S.

The procedure for constructing the ci is similar to the procedure used earlier
in this paragraph. Since each ran(ci) = ran(ai)∪ ran(bi), we have that ai/δ ∧
bi/δ = ci/δ. Thus

t(a1/δ ∧ b1/δ, . . . , am/δ ∧ bm/δ) = t(c1/δ, . . . , cm/δ)
= t(c1, . . . , cm)/δ
= p/δ

where p ∈ Ω. The last equality holds since the first 2|A| coordinates of
t(c1, . . . , cm) are contained in R and exhaust R while the last 2|A| coordinates
are contained in S and exhaust S. This establishes that ∧ is compatible with
t, which was arbitrarily chosen, so ∧ is a homomorphism. 2

THEOREM 2.8 Let A be a finite algebra which omits types 1 and 2 . The
following conditions are equivalent.

(i) A is self–rectangulating.

(ii) A is isomorphic to a subalgebra of a finite algebra B ∈ V(A) such that
B has a compatible semilattice operation.

If A is subdirectly irreducible and µ denotes its monolith, then condition (iii)
below is also equivalent to (i) and (ii):

(iii) A rectangulates itself with respect to 〈0A, µ〉.

Proof. Any finite A which omits types 1 and 2 and is self–rectangulating
is a subdirect product of subdirectly irreducible algebras having all of these
properties. Furthermore, the class of finite algebras A which have finite ex-
tensions in V(A) with compatible semilattice operations is closed under the
formation of subalgebras and finite products. Therefore it suffices to prove
(i) ⇒ (ii) for the case when A is subdirectly irreducible. However, then (i)
obviously implies (iii) and Lemma 2.7 proves that (iii) implies (ii).

That (ii) implies (i) can be verified as follows. Assume that A is a subal-
gebra of B where B has a compatible semilattice operation ∧. Select a gene
(e,u, 0, 1, ρ) in A, and let U = e(A). We claim that the element 1 is maximal
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in U under the restriction of the semilattice ordering ≤ of B to U . This follows
by observing that if u ∈ U is such that 1 ≤ u, then

1 = 1 u 1 = (u ∧ 1) u (1 ∧ u) = (u u 1) ∧ (1 u u) = u ∧ u = u.

To verify self–rectangulation choose a polynomial f ∈ Pol m+n(A) and tuples
a,b ∈ Am, c,d ∈ An such that

ef(a, c) = 1 = ef(b,d).

We have that ef(a,d) ∈ U , since e(A) = U , and

1 = 1 ∧ 1
= ef(a, c) ∧ ef(b,d)
= ef(a ∧ b, c ∧ d)
= ef(a ∧ b,d ∧ c)
= ef(a,d) ∧ ef(b, c)

which shows that 1 ≤ ef(a,d) in the restriction of the semilattice order to
U . Since 1 is maximal, we deduce that ef(a,d) = 1, which establishes the
rectangulation condition. This completes the proof. 2

COROLLARY 2.9 Let A be a finite algebra such that A omits types 1
and 2 and V(A) omits type 1 . If A is self–rectangulating, then V(A) is
self–rectangulating and of type–set {5 }.

Proof. The previous theorem shows that if A is self–rectangulating, then
A has an extension B which has a compatible semilattice operation. Let F be
a finitely generated free algebra in V(A). We have that F ∈ SP(A) ⊆ SP(B)
and so F is isomorphic to a subalgebra of an algebra G (some power of B)
which has a compatible semilattice operation ∧.

We show that F omits type 2 . Suppose not, and let U be a minimal set
for a prime congruence quotient of type 2 . Let d′ be a ternary polynomial of
F which is a pseudo–Mal’cev operation for F|U . Clearly, G has a polynomial
operation d extending d′. Calculating in G we see that for any elements u, v
in the body of U we have

u = d(u, v, v) ∧ d(v, v, u)
= d(u ∧ v, v ∧ v, v ∧ u)
= d(u ∧ v, v ∧ v, u ∧ v)
= d(u, v, u) ∧ v,

whence u ≤ v in the semilattice order of G. Switching the role of u and v we
conclude that u = v. This implies that the body of U is a singleton, which is
impossible.

Combining the assumption on V(A) with the fact proved above we get
that typ{F} ∩ {1 , 2 } = ∅. Therefore we can apply the previous theorem
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once again to deduce that F is self–rectangulating. Every finite algebra is a
homomorphic image of a finitely generated, self–rectangulating, free algebra
in V(A). This proves that every finite algebra in V(A) is self–rectangulating.
Since V(A) omits types 1 and 2 and is self–rectangulating, it follows that
typ{V(A)} = {5 }. 2

In Corollary 2.9 the assumption that type 1 does not occur in V(A) cannot
be omitted, as the next example shows.

Example 2.10 Let A = (A; ·, e, f, 0) be the 3–element algebra where A =
{0, 1, 2}, 0 denotes the unary constant operation with value 0 and the remain-
ing operations are defined as follows:

x · y =
{

0 if x = 0
y otherwise

,

and

e(x) =
{

0 if x = 0
2 otherwise

, f(x) =
{

0 if x 6= 2
1 if x = 2

.

It is straightforward to check that A is a simple algebra of type 5 . The meet
operation of the chain 0 ≤ 1 ≤ 2 is easily seen to be a compatible semilattice
operation of A, hence by Theorem 2.8 A is self–rectangulating. We show that
the variety V(A) has exactly two subdirectly irreducible algebras: A and the
4–element algebra S = C/γ where C is the subalgebra of A2 with universe
A2 − {(2, 1)} and γ is the congruence collapsing all pairs having at least one
0 coordinate.

It suffices to verify that A and S are the only finite subdirectly irreducible
algebras in V(A). The following identities hold in A: x · (y · z) = (x ·y) · (x · z),
x · e(y) = e(x · y), x · f(y) = f(x · y) and x · 0 = 0. These equations imply that
for any B ∈ V(A) and any b ∈ B the function x 7→ b · x is an endomorphism.
Let B/θ be a finite subdirectly irreducible algebra in V(A) where B is a
subalgebra of Ak and assume that this representation is selected so that k is
minimal. We claim that all k–tuples with at least one 0 coordinate are θ–
related to 0̂. Suppose not, and let b = (b1, . . . , bk) ∈ B be such that (0̂,b) /∈ θ
and b has a maximum number of 0 coordinates. We may assume without
loss of generality that b1 = . . . = bl = 0 (l ≥ 1) and bl+1, . . . , bk ∈ A − {0}.
Consider the subuniverse T = {t ∈ B: t1 = . . . = tl = 0} of B and denote the
corresponding subalgebra by T. The mapping

ρ: B→ T, x = (x1, . . . , xk) 7→ b · x = (0, . . . , 0, xl+1, . . . , xk)

is an endomorphism of B onto T. Let α = ρ−1(θ|T ), let η denote the kernel of
the projection of B onto its last k−1 coordinates, and let τ be the equivalence
relation on B whose only nonsingleton block is T . It is straightforward to
check that τ and β = θ ◦ τ ◦ θ are congruences of B. Clearly, θ ⊆ α, β,
(0̂,b) ∈ τ ⊆ β, (0̂,b) /∈ θ, η ⊆ α, and by the minimality of k, η 6⊆ θ.
Therefore θ ⊂ α, β. Since B/θ is subdirectly irreducible, we conclude that
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θ ⊂ α ∩ β. Let (u,v) ∈ (α ∩ β)− θ. Then b · u θ b · v and u θ s τ t θ v for
some s, t ∈ T . Hence

u θ s = b · s θ b · u θ b · v θ b · t = t θ v,

which is impossible as (u,v) /∈ θ. This contradiction finishes the proof of the
claim that all elements of B having at least one 0 coordinate are θ–related.

Since B/θ is not a one–element algebra, it contains an element c/θ with
c ∈ (A−{0})k. Then 2̂/θ = e(c)/θ ∈ B/θ and 1̂/θ = f(2̂)/θ ∈ B/θ. It follows
that 0̂/θ, 1̂/θ, 2̂/θ are pairwise distinct. Thus |B/θ| ≥ 3, the elements of B/θ
are

0̂/θ, 1̂/θ, 2̂/θ, c/θ, d/θ, . . . with c,d, . . . ∈ (A− {0})k,

and the operations act as follows:

x · y =

{
0̂/θ if x = 0̂/θ
y otherwise

,

and

e(x) =

{
0̂/θ if x = 0̂/θ
2̂/θ otherwise

, f(x) =

{
0̂/θ if x 6= 2̂/θ
1̂/θ if x = 2̂/θ

.

The equivalence relation with a unique nonsingleton block {1̂/θ, c/θ} is a con-
gruence on B/θ. A similar statement holds with d in place of c, and this con-
tradicts the subdirect irreducibility unless B/θ ⊆ {0̂/θ, 1̂/θ, 2̂/θ, c/θ}. From
this and the description of the operations one deduces that B ∼= A or B ∼= S.

As was mentioned before, A is a simple algebra of type 5 . One can show
that S is subdirectly irreducible, its monolith µ is the equivalence relation
collapsing 1̂/γ and (1, 2)/γ, and typ(0, µ) = 1 . In particular, the algebra A
of this example omits types 1 and 2 and is self–rectangulating and yet it
generates a variety which is not of type–set {5 }.

3 A Compatible Semilattice Term

If V is a locally finite variety, we have defined what it means for V to be
self–rectangulating. When V has this property and V omits types 1 and 2 ,
then we must have typ{V} ⊆ {5 }. The purpose of this section is to prove the
following theorem.

THEOREM 3.1 If V is a locally finite variety of type set {5 } then V is self–
rectangulating if and only if it has a compatible semilattice term operation.

We already know one half of this statement to be true: if V has a com-
patible semilattice term operation ∧, then ∧ interprets in every algebra as a
compatible semilattice operation. The equivalence of the conditions of Theo-
rem 2.8 completes the argument that V is self–rectangulating. In this section
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we shall concentrate on proving the reverse: that if V is self–rectangulating
and typ{V} = {5 }, then V has a compatible semilattice term operation.

First we reduce the claim to idempotent varieties. For a variety V we define
a variety Id(V) as follows. The language L of Id(V) is specified by saying that
there is one basic operation symbol corresponding to every term operation t(x)
of V for which

V |= t(x, x, . . . , x) = x.

Each algebra A ∈ V gives rise to a model of L by interpreting the basic
operation symbols just as one would interpret the term operation that gave rise
to the basic operation symbol. The model of L which results is the idempotent
reduct of A provided with a fixed indexing of its operations. Let I denote the
class of all models of L which arise from members of V in this way. We define
Id(V) to be HSP(I). Clearly, Id(V) is an idempotent variety. Moreover, for
every equation satisfied in V which involves only idempotent term operations
there is a corresponding equation satisfied in Id(V).

LEMMA 3.2 If V is a locally finite variety of type–set {5 } which is self–
rectangulating, then so is Id(V), and the variety V has a compatible semilattice
term operation if and only if Id(V) has a semilattice term operation.

Proof. Assume that V is a locally finite variety of type–set {5 } which is
self–rectangulating. Since V is locally finite, I is uniformly locally finite and
therefore Id(V) is locally finite. Since V is of type–set {5 }, then by Theo-
rem 9.10 of [2] V satisfies an idempotent Mal’cev condition which for locally
finite varieties is equivalent to omitting types 1 and 2 . This Mal’cev condition
is expressible with equations involving idempotent term operations, so Id(V)
satisfies the same Mal’cev condition. Hence, Id(V) ∩ {1 , 2 } = ∅. Finally,
since V is self–rectangulating of type–set {5 }, we have by Theorem 2.8 that
every finite member of V has an extension which has a compatible semilattice
operation. This holds for the finite algebras in I and therefore for the finite
algebras in SP(I). Hence Theorem 2.8 can be applied to prove that the finite
free algebras of Id(V) are self–rectangulating. It follows that all finite algebras
in Id(V) are self–rectangulating. Since Id(V) ∩ {1 , 2 } = ∅ and Id(V) is self–
rectangulating, we get that typ{Id(V)} = {5 }. This proves the first claim of
the lemma.

The clone of Id(V) is isomorphic to the clone of idempotent term opera-
tions of V. It is clear from this that if V has a compatible semilattice term
operation then Id(V) has one. Conversely, assume that Id(V) has a semilattice
term operation t (not assumed to be compatible). Clearly, t is a semilattice
term operation of V. By Theorem 2.8 every finite member A of V has a fi-
nite extension B ∈ V which has a compatible semilattice operation ∧. Now
Lemma 2.5 shows that the term operation t on B coincides with ∧. Conse-
quently t is a compatible semilattice term operation of B, and hence of A.
Since V is locally finite, this implies that t is a compatible semilattice term
operation of V. 2
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From now on we can concentrate on idempotent varieties. Using a con-
struction different from the one in the previous section we show that every
self–rectangulating finite idempotent algebra A can be extended to a finite
algebra B ∈ V(A) such that B has a compatible semilattice operation and, in
addition, the corresponding semilattice has a top element. As in the previous
section, we start our considerations with subdirectly irreducible algebras.

LEMMA 3.3 Let A be a finite subdirectly irreducible algebra with non-
abelian monolith µ. Consider a 〈0A, µ〉–gene G = (e,u, 0, 1, 0A) where U =
e(A) is a 〈0A, µ〉–minimal set, and let v be the natural order of A with respect
to 〈0A, µ〉. If A rectangulates itself with respect to 〈0A, µ〉, then

(1) x ∧ y = (x u y)|U is a compatible semilattice operation of the induced
minimal algebra A|U ;

(2) v|U coincides with the semilattice order ≤ of (U ;∧);

(3) for every n-ary polynomial operation p of A whose range is contained in
U and for all elements x1, . . . , xn, y1, . . . , yn ∈ A we have

p(x1, . . . , xn) ∧ p(y1, . . . , yn) =
n∧

i=1

p(y1, . . . , yi−1, xi, yi+1, . . . , yn).

Proof. First we observe that 1 is the largest element of U with respect
to the order v|U . For any element u ∈ U we have u u 1 = u = 1 u u.
Therefore, whenever ef(u) = 1 holds for some f ∈ Pol 1(A), then applying
self–rectangulation to

ef(u u 1) = ef(u) = 1 = ef(1 u u)

we obtain that 1 = ef(1 u 1) = ef(1). This shows that u v 1.
To prove that the operation x ∧ y = (x u y)|U is commutative, consider

arbitrary elements u, v ∈ U . By symmetry it suffices to show that uuv v vuu.
Assume that for some f ∈ Pol 1(A) we have ef(u u v) = 1. Then

1 = ef(u u v) v ef(u u 1) = ef(u) = ef(u u u),

hence 1 = ef(u u u). Similarly, we get that 1 = ef(v u v). Thus

ef(u u u) = 1 = ef(v u v),

which implies by self–rectangulation that ef(v u u) = 1, as required.
The associativity of x∧y = (xuy)|U can be verified in a similar fashion. Let

u, v, w ∈ U . By commutativity it is enough to show that uu(vuw) v wu(vuu).
Suppose that ef(u u (v u w)) = 1 for some f ∈ Pol 1(A). We have

1 = ef(u u (v u w)) v ef(u u (v u 1))
= ef(u u v)
= ef(u u (u u v))
= ef(u u (v u u))
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and
1 = ef(u u (v u w)) v ef(1 u (v u w))

= ef(v u w)
= ef(w u v)
= ef(w u (w u v))
= ef(w u (v u w)).

Consequently,
ef(u u (v u u)) = 1 = ef(w u (v u w)),

implying by self–rectangulation that ef(w u (v u u)) = 1.
Thus x ∧ y = (x u y)|U is a semilattice operation on U . Obviously, for

any elements u, v ∈ U we have u ∧ v v u ∧ 1 = u and similarly u ∧ v v v.
Furthermore, if w v u, v (w ∈ U), then w = w∧w v u∧ v, showing that u∧ v
is the greatest lower bound of u and v with respect to v|U . This proves (2).

To conclude the proof of (1) it remains to show that x ∧ y is compatible
with the operations of A|U . Let p be an n-ary polynomial operation of A
whose range is contained in U , and let u,v ∈ Un. We claim that

p(u) ∧ p(v) = p(u ∧ v).

By (2) the inequality w is obvious. To prove the reverse inequality assume
that ef(p(u) ∧ p(v)) = 1 for some f ∈ Pol 1(A). It follows that ef(p(u)) w 1
and ef(p(v)) w 1. Hence

ef(p(u ∧ u)) = ef(p(u)) = 1 = ef(p(v)) = ef(p(v ∧ v)),

so by self–rectangulation we conclude that ef(p(u ∧ v)) = 1.
The equality in (3) can be established by showing that for any f ∈ Pol 1(A)

the ef–image of the left hand side equals 1 if and only if the ef–image of the
right hand side equals 1. We know from (1)–(2) that ef |U is a ∧–endomorphism
and 1 is the largest element of the semilattice (U ;∧). Therefore the ef–image
of the left hand side of the equality is 1 if and only if

ef(p(x1, . . . , xn)) = 1 = ef(p(y1, . . . , yn)),

and the ef–image of the right hand side of the equality is 1 if and only if

ef(p(y1, . . . , yi−1, xi, yi+1, . . . , xn)) = 1 for all 1 ≤ i ≤ n.

Making use of self–rectangulation one can easily see that the latter two con-
ditions are equivalent. 2

LEMMA 3.4 Let A be a finite subdirectly irreducible algebra with non-
abelian monolith µ such that A rectangulates itself with respect to 〈0A, µ〉,
and let U be a 〈0A, µ〉–minimal set. Furthermore, let ∧ be the (unique) com-
patible semilattice term operation of A|U (cf. Lemma 3.3 and Corollary 2.6).
If the basic operations of the algebra A are surjective, then A is isomorphic
to a subreduct of a matrix power of the semilattice (U ;∧).
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Proof. Let G = (e,u, 0, 1, 0A) be a 〈0A, µ〉–gene with U = e(A) as in
Lemma 3.3. We define a set F of unary polynomial operations of A as follows:

F = {ef : f ∈ Pol 1(A), 1 ∈ ef(A)},

and enumerate F as F = {e1, . . . , em}.
Now we consider the mapping

ϕ: A→ Um, a 7→ (e1(a), . . . , em(a)).

If for some elements a, b ∈ A we have ei(a) = ei(b) for all i (1 ≤ i ≤ m), then
the definition of the natural order v immediately implies that a = b. Thus ϕ
is injective.

Let g(x1, . . . , xn) be any basic operation of A. For any i (1 ≤ i ≤ m)
the range of eig(x1, . . . , xn) has a largest element, namely 1, because g is
surjective and 1 ∈ ei(A) ⊆ U . Select elements ai1, . . . , ain ∈ A such that
eig(ai1, . . . , ain) = 1. Applying Lemma 3.3 we see that

eig(x1, . . . , xn) = eig(x1, . . . , xn) ∧ eig(ai1, . . . , ain)
=
∧n
j=1 eig(ai1, . . . , ai,j−1, xj, ai,j+1, . . . , ain)

for all x1, . . . , xn ∈ A. The meetands on the right hand side are unary poly-
nomial operations of A whose range is contained in U ; moreover, this range
contains 1 because eig(ai1, . . . , ain) = 1. Thus the meetands are members of
F . In symbols, we have

eig(x1, . . . , xn) =
n∧

j=1

eλ(i,j)(xj)

for appropriate indices λ(i, j) ∈ {1, . . . , m}.
It is straightforward to check that if we make correspond to each n–ary

basic operation g of A the n-ary operation

(y1
1, . . . , y

m
1 ), . . . , (y1

n, . . . , y
m
n )

ḡ7→



n∧

j=1

y
λ(1,j)
j , . . . ,

n∧

j=1

y
λ(m,j)
j




on Um, then ϕ yields an isomorphism between A = (A; g, . . .) and a subalgebra
of the reduct R = (Um; ḡ, . . .) of (U ;∧)[m]. 2

Added later: Since this was written R. McKenzie discovered a charac-
terization of those finite algebras which are isomorphic to a subalgebra of a
reduct of a matrix power of the two-element lower bounded meet semilattice.
His result can be applied to prove Lemma 3.4 with the surjectivity assumption
omitted.

THEOREM 3.5 Let A be a finite idempotent algebra which omits types 1
and 2 . If A is self–rectangulating, then A is isomorphic to a subalgebra of a
finite algebra B ∈ V(A) such that B has a compatible semilattice operation
and the corresponding semilattice has a largest element.
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Proof. Every finite algebra A which omits types 1 and 2 and is self–
rectangulating is a subdirect product of subdirectly irreducible algebras hav-
ing all of these properties. It suffices to prove the claim of the theorem for
subdirectly irreducible algebras, since the class of algebras A which have ex-
tensions in V(A) with the required properties is closed under the formation of
subalgebras and products.

From now on we assume that A is subdirectly irreducible, and we use the
notation introduced in the statement and the proof of the preceding lemma.
Let W denote the subalgebra of the reduct R of (U ;∧)[m] with base set ϕ(A)
which is isomorphic to A via ϕ. Define a subset B of Um as follows:

B =
{

(y1, . . . , ym) ∈ Um: for all L ⊆ {1, . . . , m} and 1 ≤ r ≤ m,
∧
l∈L y

l = yr whenever A |= ∧
l∈L el(x) = er(x)

}
.

We show that B is a subuniverse of R. Let g be a basic operation of A,
and use all notation related to g which was introduced in the previous proof;
in particular, ḡ is the corresponding operation of R. Select arbitrary m-tuples
yj = (y1

j , . . . , y
m
j ) ∈ B (1 ≤ j ≤ n). To verify that ḡ(y1, . . . , yn) ∈ B, we

consider an arbitrary equation

A |=
∧

l∈L
el(x) = er(x)

where L ⊆ {1, . . . , m} and 1 ≤ r ≤ m. Then

A |=
∧

l∈L
elg(x1, . . . , xn) = erg(x1, . . . , xn),

that is

A |=
∧

l∈L

n∧

j=1

eλ(l,j)(xj) =
n∧

j=1

eλ(r,j)(xj). (1)

Since g is idempotent, we have that

A |=
n∧

j=1

eλ(r,j)(x) = erg(x, . . . , x) = er(x),

whence it follows that eλ(l,j)(x) ≥ er(x) and eλ(r,j)(x) ≥ er(x) for all l ∈ L,
1 ≤ j ≤ n, and x ∈ A. By construction, er(a) = 1 for some a ∈ A. Since 1 is
the largest element of (U ;∧), this implies that eλ(l,j)(a) = eλ(r,j)(a) = 1 for all
l ∈ L and 1 ≤ j ≤ n. Consequently, if we substitute a for all variables in (1)
but one, then we conclude that

A |=
∧

l∈L
eλ(l,j)(x) = eλ(r,j)(x) for all 1 ≤ j ≤ n.

This shows that in (1) equality holds separately in each variable. Hence by
the definition of B we have

∧

l∈L
y
λ(l,j)
j = y

λ(r,j)
j for all 1 ≤ j ≤ n.
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By taking
∧

over all j we see that the required equality holds for the coordi-
nates of ḡ(y1, . . . , yn). This proves that ḡ(y1, . . . , yn) ∈ B.

Let B denote the subalgebra of R with base set B. Clearly, W (∼= A) is a
subalgebra of B. Furthermore, B is closed under the coordinatewise action of
the operation x ∧ y, and this yields a compatible semilattice operation for B.
The m-tuple (1, . . . , 1) belongs to B, and it is a largest element with respect
to this semilattice operation, as B ⊆ Um and 1 is the largest element of the
semilattice (U ;∧).

It remains to show that B ∈ V(A). Let t, t′ be n-ary terms in the language
of A such that A |= t = t′, that is, W |= t = t′. By construction W is a
subalgebra of R, and R is a reduct of (U ;∧)[m]. Therefore the term operation
corresponding to t has the form

(y1
1, . . . , y

m
1 ), . . . , (y1

n, . . . , y
m
n ) 7→


. . . ,

ith︷ ︸︸ ︷∧

(k,j)∈Ti
ykj , . . .


 (2)

where Ti (1 ≤ i ≤ m) are appropriate subsets of {1, . . . , m} × {1, . . . , n}, and
the term operation corresponding to t′ has a similar form with T ′i in place of
Ti for each i.

The way the isomorphism between A and W was set up shows that for
1 ≤ i ≤ m we have

A |= eit(x1, . . . , xn) =
∧

(k,j)∈Ti
ek(xj), eit

′(x1, . . . , xn) =
∧

(k,j)∈T ′i
ek(xj).

Hence the assumption A |= t = t′ is equivalent to the condition that

A |=
∧

(k,j)∈Ti
ek(xj) =

∧

(k,j)∈T ′i
ek(xj) for all 1 ≤ i ≤ m.

The same argument as before implies that equality holds separately in each
variable; that is, we have

A |=
∧

k
(k,j)∈Ti

ek(x) =
∧

k
(k,j)∈T ′i

ek(x) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Furthermore, since A is idempotent,

∧

k
(k,j)∈Ti

ek(x) ≥ eit(x, . . . , x) = ei(x) for all x ∈ A, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

By construction, each unary polynomial operation ei assumes the value 1; let
ei(ai) = 1 (ai ∈ A). Hence

∧

k
(k,j)∈Ti

ek(x) = eit(a1, . . . , aj−1, x, aj+1, . . . , an)
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is a unary polynomial operation, and it also assumes the value 1. Therefore
for all indices 1 ≤ i ≤ m, 1 ≤ j ≤ n there exists an index 1 ≤ l ≤ m such that

A |=
∧

k
(k,j)∈Ti

ek(x) = el(x) =
∧

k
(k,j)∈T ′i

ek(x).

By the definition of B this implies that for all m-tuples y = (y1, . . . , ym) ∈ B
and for all indices 1 ≤ i ≤ m, 1 ≤ j ≤ n the equality

∧

k
(k,j)∈Ti

yk = yl =
∧

k
(k,j)∈T ′i

yk.

holds. If we form the meet of the left and right sides over all j we obtain
that

∧

(k,j)∈Ti
ykj =

∧

(k,j)∈T ′i
ykj . Referring to (2) we see that this equality for each

i implies that B |= t = t′. 2

LEMMA 3.6 Let B be a finite idempotent algebra such that B has a com-
patible semilattice operation x ∧ y and the corresponding semilattice has a
largest element. If B contains no 2-element essentially unary subalgebra, then
x ∧ y is a term operation of B.

Proof. The natural order and the largest element of the semilattice (B;∧)
will be denoted by ≤ and 1, respectively. For x, y ∈ B and any binary term
operation t we have

t(x, y) = t(x ∧ 1, 1 ∧ y) = t(x, 1) ∧ t(1, y),
t(x ∧ y, 1) = t(x ∧ y, 1 ∧ 1) = t(x, 1) ∧ t(y, 1).

Thus, t has the form t(x, y) = α(x)∧β(y) for some unary polynomial operations
α, β of B, which are ∧-endomorphisms. The idempotence of B implies that
for all elements x ∈ B we have α(x) ∧ β(x) = x, and hence α(x), β(x) ≥ x.
This shows that any binary term operation is expressible as α(x)∧β(y) where
α and β are increasing ∧–endomorphisms.

Fixing a binary term t and a representation t(x, y) = α(x)∧ β(y), we have

α(αn(x) ∧ β(y)) ∧ β(y) = αn+1(x) ∧ αβ(y) ∧ β(y) = αn+1(x) ∧ β(y)

for any n, since α is an increasing ∧-endomorphism. This implies that if we
iterate t(x, y) in its first variable until we produce a term t′(x, y) which satisfies
t′(t′(x, y), y) = t′(x, y), then the term operation t′(x, y) may be represented as
ᾱ(x)∧β(y) where ᾱ2 = ᾱ. We can repeat this argument in the second variable
to produce a term t′′(x, y) whose representation is ᾱ(x)∧β̄(y) where ᾱ2 = ᾱ and
β̄2 = β̄. If s(x, y) = t′′(t′′(x, y), t′′(y, x)), then s(x, y) has the representation

s(x, y) = ᾱ(ᾱ(x) ∧ β̄(y)) ∧ β̄(ᾱ(y) ∧ β̄(x))
= (ᾱ(x) ∧ β̄(x)) ∧ (ᾱβ̄(y) ∧ β̄ᾱ(y))
= t′′(x, x) ∧ (ᾱβ̄(y) ∧ β̄ᾱ(y))
= x ∧ (ᾱβ̄(y) ∧ β̄ᾱ(y)).
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That is, s(x, y) is a term operation of B of the form x ∧ γ(y) where γ is an
increasing ∧-endomorphism. Iteration in the second variable yields a term
operation x ∧ ε(y) such that ε2 = ε.

Let us enumerate the term operations of B of the form x∧ε(y) with ε2 = ε
as x ∧ εi(y) (ε2

i = εi), i = 1, 2, . . . , k, and form the term operation

x ∧ δ(y) = (. . . ((x ∧ ε1(y)) ∧ ε2(y)) ∧ . . .) ∧ εk(y).

As before, for some power E = δm of δ we have that E2 = E. The m-th iterate
of x ∧ δ(y) in the second variable is the term operation x ∧ E(y). Clearly,

E(x) = δm(x) ≤ εmi (x) = εi(x) for all x ∈ B, 1 ≤ i ≤ k.

We prove the contrapositive of the claim of the lemma. Assume x ∧ y is
not a term operation of B. Then E is not the identity endomorphism of the
semilattice (B;∧). Hence there exists an element u ∈ B such that E(u) 6= u.
Let v = E(u). Since E(u) ≥ u, it follows that v > u. Furthermore, E(v) =
E2(u) = E(u) = v. This equality implies that every element in the interval
[u, v] is mapped by E into v. Replacing u by a lower cover of v we can assume
that u is covered by v, and all properties established so far remain valid. In
addition,

εi(u) ≤ εi(v) = εiE(u) ≤ ε2
i (u) = εi(u),

therefore εi(u) = εi(v) for all i (1 ≤ i ≤ k). Since u < v ≤ εi(v), this equality
shows that every term operation x ∧ εi(y) (1 ≤ i ≤ k) restricts to {u, v} as a
projection.

B is idempotent, therefore for any binary term operation t(x, y) of B we
have u ≤ t(u, v) ≤ v. But u is covered by v, hence {u, v} is a subuniverse of B.
Let U denote the subalgebra of B with base set {u, v}. The set {u, v} is closed
under the operation x∧y as well, hence (x∧y)|{u,v} is a compatible semilattice
operation of U. Thus U can have no other binary term operations than the
projections and (x ∧ y)|{u,v}. Suppose that (x ∧ y)|{u,v} is a term operation
of U, say, t(x, y)|{u,v} = (x ∧ y)|{u,v} for some binary term t. Going over the
construction above yielding x∧ ε(y) from t(x, y) = α(x)∧ β(y), one can easily
check that in this case (x∧ ε(y))|{u,v} = (x ∧ y)|{u,v}. However, this possibility
was excluded in the preceding paragraph. Thus we have established that U is
a 2–element algebra with a compatible semilattice operation such that every
binary term operation of U is a projection. The only 2–element algebras with
these properties are essentially unary. 2

Now we are ready to complete the proof of Theorem 3.1. Let V be a locally
finite variety of type set {5 } which is self–rectangulating. By Lemma 3.2 it
will follow that V has a compatible semilattice term operation if we show that
Id(V) has a semilattice term operation.

Let F be the two-generated free algebra in Id(V). By Lemma 3.2 F is a fi-
nite idempotent algebra of type set {5 } which is self–rectangulating, therefore
by Theorem 3.5 F can be extended to a finite algebra B ∈ Id(V) such that B
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has a compatible semilattice operation and the corresponding semilattice has
a largest element. Since Id(V) omits type 1 , Lemma 3.6 implies that B has a
compatible semilattice term operation. The same conclusion holds then for F,
too. Thus the variety Id(V) has a semilattice term operation, as required. 2

As a consequence of Theorem 3.1 we get the following improvement on
Corollary 2.9.

COROLLARY 3.7 If A is a finite algebra which omits types 1 and 2 , then
the following conditions are equivalent.

(i) A is self–rectangulating and V(A) omits type 1 .

(ii) A is self–rectangulating and typ{V(A)} = {5 }.

(iii) A has a compatible semilattice term operation.

Proof. The statement that a locally finite variety V has a semilattice term
implies that typ{V} ∩ {1 , 2 } = ∅ since this is true of the variety of semilat-
tices. It is easily deducible from Theorem 2.8 that if A (and hence V(A))
has a compatible semilattice term, then V(A) is self–rectangulating. Hence
(iii)⇒(ii)⇒(i). The implication (i)⇒(iii) can be deduced from Corollary 2.9
and from Theorem 3.1. 2

4 Definable Principal Congruences

LEMMA 4.1 Let A be a finite algebra with a compatible semilattice term
operation x∧ y. If t(x1, . . . , xm) is a term in the language of A, then for some
k ≤ |A||A| there is a term t′(y1, . . . , yk) and a partition {X1, . . . , Xk} of the set
{x1, . . . , xm} such that

A |= t(x1, . . . , xm) = t′(
∧
X1, . . . ,

∧
Xk).

Proof. Let us fix a term t and denote by R the range of the term operation
tA. If c,d ∈ Am are m–tuples such that tA(c) = tA(d) then tA(c) = tA(c) ∧
tA(d) = tA(c ∧ d). Therefore for every element a ∈ R there exists a smallest
m-tuple b with tA(b) = a; this b is the meet of all c ∈ Am with tA(c) = a.

Now we define an equivalence relation∼ on {x1, . . . , xm} as follows: xi ∼ xj
if and only if for every element a ∈ R, in the smallest m–tuple b = (b1, . . . , bm)
with tA(b) = a we have bi = bj. Clearly, xi ∼ xj holds exactly when the
mappings R → A, a 7→ bi and R → A, a 7→ bj coincide. Therefore ∼ has at
most |A||A| blocks.

We show that if x1 ∼ x2 then

A |= t(x1, . . . , xm) = t(x1 ∧ x2, x1 ∧ x2, x3, . . . , xm);
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that is, for the (m− 1)-ary term t′(y1, . . . , ym−1) = t(y1, y1, . . . , ym−1) we have

A |= t(x1, . . . , xm) = t′(x1 ∧ x2, x3 . . . , xm).

Choose an arbitrary m-tuple (c1, . . . , cm) ∈ Am, and let tA(c1, . . . , cm) = a.
For the smallest m–tuple (b1, . . . , bm) with tA(b1, . . . , bm) = a we have b1 = b2.
Therefore b1 = b2 ≤ c1, c2, whence b1 = b2 ≤ c1 ∧ c2. Thus

a = tA(b1, . . . , bm) ≤ tA(c1 ∧ c2, c1 ∧ c2, c3 . . . , cm) ≤ tA(c1, . . . , cm) = a,

which implies the necessary equality tA(c1 ∧ c2, c1 ∧ c2, c3 . . . , cm) = a.
The estimate on the number of blocks of ∼ and the claim proved in the

preceding paragraph show that for any term t of arity m > |A||A| there exists
a term t′ of smaller arity k for which an identity required in the lemma holds.
Applying this fact to t′ in place of t we get that the least k for which such a
term t′ exists for t must satisfy k ≤ |A||A|. This completes the proof. 2

COROLLARY 4.2 Assume that A is a finite algebra with a compatible
semilattice term operation and that B ∈ V(A). If p(x) is a unary polynomial
of B, then for some k ≤ |A||A| there is an (k + 1)–ary term r and a tuple
b ∈ Bk such that p(x) = rB(x,b).

Proof. Since p ∈ Pol 1(B) there is a term t(x,y) and a tuple c of elements
of B such that p(x) = tB(x, c). Using Lemma 4.1, there is k ≤ |A||A|, a term
t′(x1, . . . , xk) and a partition of the set {x, c1, . . . , cm} into k subsets X1, . . . , Xk

such that
(t′)B(

∧
X1, . . . ,

∧
Xk) = tB(x, c) = p(x).

We may assume that X1 = {x, c11, . . . , c1s1} and that Xi = {ci1, . . . , cisi}.
Set r(x, y1, . . . , yk) = t′(x ∧ y1, y2, . . . , yk) and set bi =

∧
j cij. Then we have

p(x) = rB(x, b1, . . . , bk) as desired. 2

Let L be a language of algebras. A principal congruence formula of L
is a positive existential first–order formula Φ(x, y, u, v) of L for which

|= Φ(x, y, u, u) =⇒ x = y

holds. If A is a model of L and Φ is a principal congruence formula of L, then
for a, b, c, d ∈ A we have that ΦA(a, b, c, d) implies that (a, b) ∈ CgA(c, d). (To
see this, use the displayed implication in A/CgA(c, d).) We will call a formula
a special principal congruence formula if it has the following form:

∃a,w1, . . . ,wn−1 (x = a1)&(y = an)&n−1
i=1 (pi({u, v},wi) = {ai, ai+1}) .

In this formula, a = (a1, . . . , an), the pi are terms in the language, and the
expression pi({u, v},wi) = {ai, ai+1} means that (pi(u,wi) = ai &pi(v,wi) =
ai+1) or that the same thing holds with u and v switched.
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It is easy to see that a special principal congruence formula is a principal
congruence formula. Conversely, Mal’cev’s congruence generation theorem
proves that if A is an algebra with a, b, c, d ∈ A and (a, b) ∈ CgA(c, d), then
there is a special principal congruence formula Φ such that ΦA(a, b, c, d) holds.
It follows that for models of L the statement that (x, y) ∈ Cg(u, v) is equivalent
to the (infinite) disjunction of all special principal congruence formulas of L. If
the 4–ary relation (x, y) ∈ Cg(u, v) is uniformly definable throughout a variety
V, then the compactness theorem implies that there is a principal congruence
formula Φ, which may be taken to be a finite disjunction of special principal
congruence formulas, such that

A |= (a, b) ∈ CgA(c, d)⇐⇒ ΦA(a, b, c, d)

holds for all A ∈ V. When this happens we say that V has definable prin-
cipal congruences or DPC. DPC is a rare but useful property for a variety.
We refer the reader to [1] for an early investigation of DPC.

THEOREM 4.3 If A is a finite algebra which has a compatible semilattice
term operation, then A generates a variety with DPC.

Proof. Choose an algebra B ∈ V = V(A) and elements a, b, c, d ∈ B
such that (a, b) ∈ Cg(c, d). We shall argue that there is a special principal
congruence formula Φ of a very restricted form for which ΦB(a, b, c, d) holds.

Choose any Mal’cev chain a = a1, . . . , an = b which connects a to b by
a chain of polynomial images of c and d. Say that the polynomials involved
are pB

i (x,wi), i = 1, . . . , n, and that pB
i ({c, d},wi) = {ai, ai+1}. We alter this

to a new chain by defining gi = a1 ∧ · · · ∧ ai and hi = ai ∧ · · · ∧ an. This
gives us a descending chain a = g1, . . . , gn followed by an ascending chain gn =
h1, . . . , hn = b. The polynomials which witness that this is indeed a Mal’cev
chain are defined as follows: ri(x) = pB

i (x,wi)∧gi and si(x) = pB
i (x,wi)∧hi+1.

Then we have ri({c, d}) = {gi, gi+1} and si({c, d}) = {hi, hi+1}.
Let P be a minimal set of V–inequivalent representatives for the (|A||A|+1)–

ary terms. We will prefer the first variable in any member of P , so a typical
member of P will be written t(x,y). From Corollary 4.2 we have that each
polynomial ri(x) is equal to one of the form RB

i (x,pi) where Ri ∈ P and pi ∈
B|A|

|A|
. Similarly, each si(x) is equal to one of the form SB

i (x,qi). Furthermore,
we shall argue, no two nontrivial links in the descending chain g1, . . . , gn can
arise from the same term R(x,y). To see this, assume that gi > gi+1 ≥ gj >
gj+1 and that RB({c, d},pi) = {gi, gi+1} and RB({c, d},pj) = {gj, gj+1}. Then
we have RB(c,pj) = gj or RB(d,pj) = gj. Since gj ∧ gi = gj = gj ∧ gi+1, we
have

gj = RB(c,pj) ∧ RB(d,pi) or gj = RB(d,pj) ∧ RB(c,pi).

By the compatibility of the operation ∧, either conclusion leads to

gj = RB(c ∧ d,pi ∧ pj).
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But we also have RB(c,pj) = gj+1 or RB(d,pj) = gj+1. The same argument
yields that

gj+1 = RB(c ∧ d,pi ∧ pj),

which contradicts gj > gj+1.
We have shown that, deleting trivial links in the descending chain g1, . . . , gn

if necessary, the polynomials associated to the links may be chosen to be unary
polynomials constructed from members of P , and that the polynomials asso-
ciated with different links may be assumed to be constructed from different
members of P . This shows that the length of the descending chain g1, . . . , gn,
after trivial links are deleted, is at most |P |. We get a similar bound on the
ascending chain h1, . . . , hn. But, there are only finitely many special principal
congruence formulas which describe Mal’cev chains of length ≤ 2|P | and in-
volve only terms in P . Let Φ be the disjunction of all such special principal
congruence formulas. Φ is a principal congruence formula with the property
that for a randomly chosen instance of (a, b) ∈ CgB(c, d) we have ΦB(a, b, c, d).
Hence Φ is a principal congruence formula for V. 2

This theorem proves that a finitely generated variety which has a compati-
ble semilattice term operation has DPC. It is not true that every locally finite
variety with a compatible semilattice term operation has DPC as the next
example shows.

Example 4.4 Our algebra will be A = (A;∧, ·) where A = {0, 1, 2, 3, . . .}
and

x ∧ y =
{
x if x = y
0 otherwise

, x · y =
{
x if y = x + 1
0 otherwise

.

Here + is the usual addition on {0, 1, 2, 3, . . .}. The operation ∧ is a semilattice
operation. It is easy to check that (x · y) ∧ (u · v) is nonzero if and only if
0 6= x = u = y− 1 = v− 1 in which case the value of the expression is x. The
same statement is true of (x ∧ u) · (y ∧ v). This implies that

(x · y) ∧ (u · v) = (x ∧ u) · (y ∧ v),

or that ∧ is a compatible semilattice operation of A.
For any x, y ∈ A we have x ∧ y, x · y ∈ {x, y, 0}, so for any S ⊆ A the

subuniverse generated by S is contained in S ∪ {0}. Hence A is a uniformly
locally finite algebra which implies that V := V(A) is locally finite. However,
V does not have DPC. The easiest way to establish this is for us to refer to
Theorem 5.1 to see that V is residually small. Next, we refer to the result of
[1] which proves that any residually small variety which has DPC is residually
< N for some finite N . Finally, V is not residually < N for any finite N since
A is an infinite subdirectly irreducible algebra in V.
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5 Residual Smallness and Finite Axiomatiz-

ability

McKenzie has characterized which locally finite varieties with type–set con-
tained in {3 , 4 , 5 } are residually small. One can apply McKenzie’s criterion
to show that any locally finite variety which has a compatible semilattice term
is residually small. If A is a finite algebra with a compatible semilattice term
operation, then McKenzie’s result implies that V(A) is residually < (2ω)+.
However, by the previously mentioned result from [1], this forces V(A) to be
residually < N for some finite N . Without using McKenzie’s results (which
are not yet published) we prove that if A has a compatible semilattice term

operation and |A| = n, then V(A) is residually less than N = 2n
nn
n+1

.

THEOREM 5.1 Let V be a variety which has a compatible semilattice term
operation. V is residually small. If V = V(A) where |A| = n, then V is

residually less than 2n
nn
n+1

.

Proof. If V is not finitely generated, then let P be a minimal set of V–
inequivalent representatives for the terms of V. If V is generated by A where
|A| = n, then let P be a minimal set of representatives for the (nn + 1)–ary
terms. In either case, a typical member of P will be written t(x,y).

Let B be a subdirectly irreducible algebra in V. Whether or not V is
finitely generated, for each p(x) ∈ Pol 1(B) there is a t(x,y) ∈ P and a tuple
b of elements of B such that p(x) = tB(x,b). (When V is finitely generated
this claim follows from Corollary 4.2.) If µ is the monolith of B, choose
elements 0 < 1 in B such that µ = Cg(0, 1). For each u 6= v in B we get that
(0, 1) ∈ Cg(u, v), so there is a Mal’cev chain connecting 1 to 0 by a chain of
polynomial images of {u, v}. We may assume that the form of this Mal’cev
chain is of the kind considered when we constructed our DPC formula in the
last section, so in particular we may assume that this Mal’cev chain is a chain
descending from 1 followed by a chain ascending to 0. Hence whenever u 6= v
in B there is a t(x,y) ∈ P and a tuple b such that

tB(u,b) = 1 > tB(v,b)

or the same with u and v switched. (This situation occurs at the beginning of
the Mal’cev chain.)

For each u ∈ B, let Su denote the subset of P consisting of those t(x,y) ∈ P
for which there is a tuple b of elements of B such that tB(u,b) = 1. Assume
for the moment that u 6= v and that Su = Sv. Since u 6= v, we have from the
previous paragraph that there is some t ∈ P and some tuple b such that

tB(u,b) = 1 > tB(v,b)

or the same with u and v switched. Without loss of generality we may assume
that the displayed situation is our case. The displayed line implies that t ∈
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Su = Sv, so there is some tuple b′ such that tB(v,b′) = 1. Hence

tB(v,b) < 1
= 1 ∧ 1
= tB(u,b) ∧ tB(v,b′)
= tB(u ∧ v,b ∧ b′)
= tB(u ∧ v,b′ ∧ b)
= tB(u,b′) ∧ tB(v,b)
≤ tB(v,b)

But tB(v,b) < tB(v,b) is impossible. We conclude that if u 6= v, then Su 6= Sv.
Consequently, the function from B to the power set of P defined by u 7→ Su
is one–to–one. This proves that |B| ≤ 2|P |, and therefore that V is residually
less than (2|P |)+. When V is generated by an n–element algebra, then |P | =
|FV(nn + 1)|. The estimate |FV(m)| ≤ nn

m
, which holds for any algebra in a

variety generated by an n–element algebra, yields that

|B| ≤ 2n
n(nn+1)

≤ 2n
nn
n+1

.

The latter inequality is strict if n > 1 and the former is strict if n = 1. This
proves the theorem. 2

COROLLARY 5.2 A finite algebra of finite type which has a compatible
semilattice term operation is finitely based.

Proof. Any finite algebra of finite type which generates a variety with DPC
which is residually < N for some integer N is finitely based, as is proved in
[5]. 2

6 Idempotent Varieties

The self–rectangulating conditon is a kind of term condition similar to the
usual one which defines the class of abelian algebras. There seem to be several
points of correspondence between the property of being abelian and the prop-
erty of being self–rectangulating. In this correspondence one term condition
is the analogue of the other.

We find a point of correspondence when we restrict the types that can occur
in a finite algebra. A finite abelian algebra must have type–set contained in
{1 , 2 }. When the algebra is of type–set {2 } only, then it satisfies a property
stronger than the term condition: it is quasiaffine. This means that it is a
subalgebra of a reduct of an algebra which has a compatible Mal’cev term
operation. Correspondingly, a finite self–rectangulating algebra of type–set
{5 } is a subalgebra of a reduct of an algebra which has a compatible semilattice
term operation.
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Another point of correspondence is found when we consider locally finite
varieties with the properties described in the previous paragraph. An abelian
locally finite variety V of type–set {2 } is congruence modular, and therefore
affine by Herrmann’s Theorem. But a variety is affine if and only if it has
a compatible Mal’cev term operation. Thus a locally finite variety of type–
set {2 } is abelian if and only if it has a compatible Mal’cev term operation.
Correspondingly, we have proved in this paper that a locally finite variety of
type–set {5 } is self–rectangulating if and only if it has a compatible semilattice
term operation.

The correspondence up to this point suggests that the analogue of an affine
algebra is an algebra with a compatible semilattice operation. Now the struc-
ture of a variety V of affine algebras is understood by associating to the va-
riety a ring R and then comparing V to the variety of left R–modules. The
ring of V is constructed from the compatible Mal’cev term operation of V
along with some idempotent binary terms. In particular, the ring associated
to V is the same as the ring associated to the idempotent reduct of V. It
is satisfying to learn that the correspondence between abelian varieties and
self–rectangulating varieties continues to hold up. We will see in this section
that if V has a compatible semilattice term operation, then we can construct
a semiring from the semilattice term operation and some idempotent binary
term operations. When V is idempotent, the semiring seems to determine al-
most as much about V as the ring of an idempotent affine variety determines
about that variety.

The results in this section come from [3]. The paper [3] is part of an inves-
tigation of varieties of idempotent algebras whose term operations commute
with each other. That paper is an analysis of the case where the variety has a
semilattice term operation. Hence all varieties considered in [3] have a compat-
ible semilattice term operation, but moreover they have the property that all
other term operations are compatible as well. If one checks the proofs given,
though, one finds that almost all arguments remain intact (sometimes with
inessential modifications) for idempotent varieties with a compatible semilat-
tice operation. We state the main facts about the structure of such varieties.
(N. B.: in [3] the compatible semilattice operation is a join operation denoted
by +. In this paper we have used a compatible meet operation denoted by ∧.
Therefore, the order we have been considering is the reverse of the order in
[3]. Since we mean to emphasize the analogy with affine algebras, and there-
fore with varieties of modules, we switch now to a join semilattice operation
denoted by +.)

THEOREM 6.1 (The Structure of Subdirectly Irreducible Algebras) Let A
be an idempotent subdirectly irreducible algebra which has a compatible (join)
semilattice term operation denoted by +. The following are true.

(1) A has a least element 0.

(2) A has an element u which is the least element in A− {0}.
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(3) The monolith of A is the equivalence relation on A having {0, u} as its
only nontrivial block.

(4) The set
U = {s(x, 0) | s is a binary term}

= {p(x) ∈ Pol1 (A) | p(0) = 0}
= {q(x) ∈ Pol1 (A) | 0 ∈ q(A)}

is a set of decreasing endomorphisms of (A; +).

(5) A is polynomially equivalent to (A; +, U).

Proof. See the proof of Theorem 3.1 of [3]. 2

Now we construct the semiring. We could build it from a set of inequivalent
binary terms or from the elements of FV(x, y) represented by those binary
terms. We follow [3] and choose the latter approach.

Let V be an idempotent variety with a compatible semilattice term oper-
ation denoted by +. Let R be the subuniverse of FV(x, y) consisting of all
t ∈ FV(x, y) such that t+y = t. We write et for the endomorphism of FV(x, y)
determined by x 7→ t, y 7→ y. For s, t ∈ FV(x, y) we write s ◦ t to denote
et(s). We write 0 to denote the element y ∈ FV(x, y) and we write 1 to denote
x + y ∈ FV(x, y).

Definition 6.2 R(V) is the algebra of type 〈2, 2, 0, 0〉 given by (R; ◦,+, 1, 0).
R(V) is called the semiring of the variety V.

R(V) satisfies the associative laws with respect to ◦ and + and ◦ distributes
over + on either side. We have 0 ◦ x = x ◦ 0 = 0 while 1 ◦ x = x ◦ 1 = x. The
operation + is commutative and 0 + x = x. (Cf. the proof of Theorem 4.11
of [3].) These laws define what is called a “semiring” in [3]. However, R(V)
satisfies an additional equation not valid in every semiring: 1 + x = 1.

Next we define the coefficient representation of the term operations
of V. Let t = t(x1, . . . , xn) be an arbitrary n–ary term operation of V. Since
V is idempotent and + is a compatible semilattice term operation of V, we
have that

V |= t(x1, . . . , xn) + y =
n∑

i=1

(t(y, y, . . . , y, xi, y, . . . , y) + y).

(On the right hand side xi is in the i–th position.) This shows that t is uniquely
determined by the elements t̂1, . . . , t̂n of R(V) where t̂i denotes the element of
R ⊆ FV(x, y) equal to t(y, y, . . . , y, x, y, . . . , y) + y with x in the i–th position
only. The coefficient representation of t is

t̂1 • x1 + · · ·+ t̂n • xn,

which may be thought of as a term in the language of R(V)–semimodules.
(See [3] for the definition of an R(V)–semimodule.)
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THEOREM 6.3 (The Connection with Semimodules) The assignment

t(x1, . . . , xn) 7→ t̂1 • x1 + · · ·+ t̂n • xn
is an injective homomorphism from the clone of V to the clone of R(V)–
semimodules.

Proof. This follows from Lemma 3.5 of [3]. 2

The homomorphism of the previous theorem is not surjective since the
clone of R(V)–semimodules is not idempotent. However, even if we replace
the target clone with the clone of all idempotent R(V)–semimodule operations
then the image of the homomorphism still may not be surjective. (It is in some
cases, for example when 1 is join–irreducible in R(V). See the first claim in
Theorem 4.24 of [3]. We note, however, that for a variety V generated by a
single subdirectly irreducible algebra, 1 is not necessarily join–irreducible in
R(V) if R(V) is not commutative.) Nevertheless, the connection with semi-
modules described in Theorem 6.3 is useful for proving results about V. It can
be used to prove the following theorem.

THEOREM 6.4 (The Lattice of Equational Theories) The lattice of equa-
tional theories extending the equational theory of V is isomorphic (in a natural
way) to Con (R(V)).

Proof. See the proof of Theorem 4.20 of [3]. 2

Any module variety has an injective cogenerator. A weaker statement is
true for idempotent varieties with a compatible semilattice term operation.
One does not have an injective cogenerator, usually, but there is a “canonical”
cogenerator constructible from R(V) whose structure is very comprehensible.
We begin the construction of this cogenerating algebra now.

Definition 6.5 Let R be a semiring satisfying 1 + x = 1. An annihilator
ideal of R is a subset I ⊆ R which is an order ideal and is closed under +.

It can be shown that the annihilator ideals of R are precisely the subsets
of R of the form 0/θ where θ is a congruence on R.

Let I denote the set of annihilator ideals of R(V). For a, b ∈ I let a ⊕ b
denote a ∩ b. For each r ∈ R(V) and each a ∈ I let

(a)r−1 = {s ∈ R(V) | sr ∈ a}.
If f is a n–ary basic operation symbol of V and the coefficient representation
of f is

f(x1, . . . , xn) = f̂1 • x1 + · · ·+ f̂n • xn,
then let [f ] denote the n–ary operation on I defined by

[f ](a1, . . . , an) = (a1)f̂−1
1 ⊕ · · · ⊕ (an)f̂−1

n .

We let I(V) denote the algebra with universe I and with basic operations of
the form [f ], one for each basic operation of V.
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THEOREM 6.6 (The Canonical Cogenerator) With notation as above, the
following hold.

(1) I(V) ∈ V.

(2) If A ∈ V is a subdirectly irreducible algebra, then A is embeddable into
I(V).

(3) V = SP(I(V)).

Proof. This can be proved with the arguments in Subsection 4.3 of [3].
Some care is needed to put things on the left or right, as needed, since R(V)
may not be commutative. 2

Our last result cited from [3] concerns the congruence extension property.
One may view this result as a strengthening of Theorem 4.3 for idempotent
varieties, since any locally finite variety with the congruence extension property
has DPC (see [1]).

THEOREM 6.7 (The Congruence Extension Property) An idempotent vari-
ety with a compatible semilattice term operation has the congruence extension
property.

Proof. The proof in Section 5 of [3] works here. 2

Assume that V is an affine variety and that t(x1, . . . , xn) is a term operation
of V. Let t′(x) = t(x, x, . . . , x). Then the term operation

s(x1, x2, . . . , xn) = t(x1, x2, . . . , xn)− t′(x1) + x1

is an idempotent term operation and t can be reconstructed from s and t′ since

t(x1, x2, . . . , xn) = s(x1, x2, . . . , xn)− x1 + t′(x1).

Thus the clone of V is generated by its idempotent subclone and the unary
component of its clone. This is part of the reason why the ring associated to V
determines most of the information about V. The corresponding result for va-
rieties with a compatible semilattice term operation is false. The idempotent
subclone may be only a very small part of the clone. A consequence of this
is that the analogy between self–rectangulating varieties of type–set {5 } and
affine varieties breaks down (or seems to) when one tries to pass from idem-
potent varieties to varieties which are not idempotent. For example, in the
affine case, a variety with a finite associated ring can only have finitely many
subvarieties. For idempotent varieties with a compatible semilattice operation
the corresponding result is true: if the associated semiring is finite then there
are only finitely many subvarieties. But for nonidempotent varieties with a
compatible semilattice operation one can have a finite associated semiring and
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still have infinitely many subvarieties. The algebra of Example 4.4 generates
a variety of this kind.

We remark that idempotence is necessary to obtain all the results of this
section. For varieties with a compatible semilattice term which are not idem-
potent none of the results in this section are true. For each result stated in
this section, either Example 4.4 or the modification of Example 2.10 obtained
by adjoining a compatible semilattice operation is a counterexample to the
result when idempotence is omitted as a hypothesis.
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Bolyai Institute, Aradi vértanúk tere 1, H–6720 Szeged, Hun-
gary.

31


