
AN AXIOMATIC FORMATION THAT IS NOT A VARIETY

KEITH A. KEARNES

Abstract. We show that any variety of groups that contains a finite nonsolvable
group contains an axiomatic formation that is not a subvariety.

1. Introduction

A formation of groups is a class of finite groups closed under homomorphic images
and finite subdirect products. (See [4].) The concept of a formation makes sense even
if the groups are infinite, and in this paper we will use the word “formation” to refer
to any class of groups that is closed under homomorphic images and finite subdirect
products. Using this definition, A. Gaglione and D. Spellman ask in Problem 14.32
of The Kourovka Notebook, [6], whether every first-order axiomatizable formation of
groups is a variety, i.e., an equationally axiomatizable class. They mention that the
answer is affirmative for any formation of abelian groups. In this note we show that
the general answer is negative.

The following result helps to put this problem into perspective.

Theorem 1.1. Let V be a class of similar algebraic structures. The following condi-
tions are equivalent:

(1) V is a variety.
(2) V is closed under homomorphic images, subalgebras and products.
(3) V is closed under homomorphic images and subdirect products.
(4) V is closed under homomorphic images, subalgebras, finite products, and V is

axiomatizable.
(5) V is an axiomatic formation that is closed under subalgebras.

Proof. The equivalence of (1) and (2) is Birkhoff’s Theorem (see [2]). Note that these
equivalent conditions easily imply each of (3)–(5).

The implication (3)⇒(1) is Kogalovskĭı’s Theorem (see [5]).
The implication (4)⇒(1) can be deduced from the theorem of van Benthem in [1]

which states that an axiomatic class of algebraic structures is closed under homo-
morphic images and subalgebras if and only if it is axiomatizable by sentences that
are finite disjunctions of equations. Thus, if (4) holds, then V can be axiomatized by
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sentences of the form Φ = Φ1 ∨ · · · ∨ Φn where each Φi is an equation. If for each i
there is some Ai ∈ V that fails to satisfy Φi, then A1 × · · · × An fails Φ, which is
impossible. Consequently if Φ = Φ1 ∨ · · · ∨ Φn holds in V , then for some i we have
that Φi also holds in V . Hence Φ may be replaced by Φi in any axiomatization of V .
This shows that V is axiomatizable by equations, so (1) holds.

The implication (5)⇒(4) is trivial, since a finite subdirect product is a subalgebra
of a finite product. �

From this result we see that the question of Gaglione and Spellman is equivalent
to each of of the following questions: if an axiomatic class of groups is closed under
homomorphic images and finite subdirect products, then it is closed under arbitrary
subdirect products? Or: if an axiomatic class of groups is closed under homomorphic
images and finite subdirect products, then it is closed under subgroups? It is the
latter formulation that we will find is the easiest to use.

We close the introduction with a proof of the result of Gaglione and Spellman.

Theorem 1.2. An axiomatic formation of abelian groups is a variety.

Proof. Suppose that F is an axiomatic formation of abelian groups. We will prove
that F is a variety by showing that it is closed under subgroups.

Suppose that G ∈ F and that H is a subgroup of G. Then G × H ∈ F for the
following reason: The functions ϕ : G × H → G : (g, h) 7→ g and ψ : G × H →
G : (g, h) 7→ g − h are readily seen to be surjective homomorphisms. Moreover
ker(ϕ) = {(0, h) | h ∈ H} and ker(ψ) = {(h, h) | h ∈ H} are disjoint. Thus G×H is
a subdirect product of (G × H)/ ker(ϕ) ∼= Im(ϕ) = G ∈ F and (G × H)/ ker(ψ) ∼=
Im(ψ) = G ∈ F . Since F contains G and is closed under finite subdirect products,
we get that G ×H ∈ F , as claimed. Now, since G ×H ∈ F and F is closed under
homomorphic images, we get that H ∈ F by projecting onto the second factor. �

2. Axiomatic formations that are not varieties

Theorem 2.1. If V is a variety of groups that contains a finite nonsolvable member,
then V contains an axiomatic subformation that is not a variety.

Proof. Choose a finite nonsolvable group A ∈ V of least cardinality. Necessarily A is
a finite nonabelian simple group whose proper subgroups are solvable. Let V(A) be
the subvariety of V that is generated by A, and let F be the class of all groups G in
V(A) that satisfy the condition that [N,N ] = N for all N �G. We will argue that

(i) F is axiomatizable,
(ii) F is a subformation of V , and
(iii) F is not a variety.

We deal with (iii) first: F is not a variety since A ∈ F and no nontrivial proper
subgroup of A is in F .
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For (ii), we must argue that the property that ∀N � G([N,N ] = N) is inherited
by homomorphic images and finite subdirect products. This property is the negation
of ∃N � G([N,N ] < N), hence this property is equivalent to the property that the
normal subgroup lattice of G has no nontrivial abelian intervals. Since the normal
subgroup lattice of a homomorphic image of G is isomorphic to an upper interval in
the normal subgroup lattice of G, and abelian intervals correspond, it follows that the
property we are considering is preserved by homomorphic images. Now suppose that
G ≤ G1×G2 is a subdirect representation of G where both G1 and G2 belong to F . If
πi : G→ Gi is the i-th projection, and Ni = ker(πi), then we have that N1∩N2 = {1}
and that the intervals [Ni, G] in the normal subgroup lattice of G have no abelian
intervals. Suppose, for the purpose of obtaining a contradiction, that H ( K are
normal subgroups of G with K/H abelian. Then [N1H,N1K] is an abelian interval
in [N1, G], which must be trivial, so N1H = N1K. From the modularity of normal
subgroup lattice, we conclude that [N1 ∩H,N1 ∩K] is a nontrivial abelian interval.
Since N2∩ (N1∩H) = {1} = N2∩ (N1∩K), we conclude again from modularity that
[N2(N1 ∩H), N2(N1 ∩K)] is a nontrivial abelian interval contained in [N2, G]. There
is no such interval. This contradiction proves that F is closed under finite subdirect
products.

Finally we argue that F is axiomatizable. Let Σ be a set of equations that axioma-
tizes V(A). Let Φn(x) be a first-order formula with one free variable x that asserts in
any group that “there exist y1, z1, y2, z2, . . . , yn, zn such that x =

∏n
i=1[yi, zi], where

each yi and each zj is a product of at most n conjugates of x”. We show that for
sufficiently large n (depending on |A|) the set Σ ∪ {∀xΦn(x)} axiomatizes F .

Assume that the group G satisfies the condition ∀N � G([N,N ] = N). If g ∈ G
and N is the normal subgroup generated by g, then g ∈ [N,N ]. This means that g
is a product of commutators [h, k] where both h and k are products of conjugates of
g. Thus G |= Φn(g) for some n. Now suppose that G fails to satisfy the condition
∀N�G([N,N ] = N). Then there is anN�G such that [N,N ] < N . If g ∈ N−[N,N ],
then every product of commutators [h, k] with h and k both products of conjugates of
g must lie in [N,N ], hence g is not such a product. Thus G 6|= Φn(g) for any n. This
shows that the condition ∀N � G([N,N ] = N) is equivalent to: ∀g ∈ G ∃n(Φn(g)).
In particular, any group satisfying Σ∪ {∀xΦn(x)} for some n belongs to F . We now
argue that there is some fixed n such that every member of F satisfies Σ∪{∀xΦn(x)}.

Choose G ∈ F and g ∈ G arbitrarily. Since G |= Φn(g) for some finite n, there
exist a finitely generated subgroup H ⊆ G that contains g and sufficiently many
other elements so that g is equal to a product of commutators of the form [h, h′]
where each h and h′ is a product of elements that are conjugate to g in H. Since
H is a finitely generated member of the locally finite variety V(A), it is finite. The
following observation is therefore useful.
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Claim 2.2. Every finite member of V(A) is isomorphic to a group of the form Ak×S
for some finite k and some finite solvable group S ∈ V(A).

This can be proved by showing that the class of finite groups in V(A) that are
isomorphic to groups of the form Ak × S for some finite k and some finite solvable
group S ∈ V(A) is closed under quotients, subgroups and products, and that this
class contains the group A. The details are left as an exercise.

This claim shows that H ∼= Ak×S for some finite k and some solvable S. Without
loss of generality we may assume that this isomorphism is an equality. Since [N,N ] <
N for all N �H with N 6⊆ Ak × {1}, we get that H |= Φn(h) for some n and some
h ∈ H only if h ∈ Ak × {1}. But H |= Φn(g) for some n according to the choice
of H, so g ∈ Ak × {1}. Since Ak × {1} ∼= Ak ∈ F , we get that [N,N ] = N for all
N � Ak. Thus, the subgroup H ′ = Ak × {1} of H contains g and sufficiently many
other elements so that g is equal to a product of commutators of the form [h, h′]
where each h and h′ is a product of elements that are conjugate to g in H ′. This
means that H ′ satisfies the defining condition for H, so (replacing H by H ′ and then
by an isomorphic group) there is no loss of generality in assuming that H = Ak.

Each sentence ∀xΦn(x) has the form “∀∃ (atomic)”, which is Horn, hence is pre-
served under products. If n is chosen so that A |= ∀xΦn(x), then for this same n
we will have Ak = H |= Φn(g). For this same n we have G |= Φn(g) since Φn(x)
is existential. Since G ∈ F and g ∈ G were arbitrary, we get that F |= ∀xΦn(x).
To summarize: if n is chosen so that A |= ∀xΦn(x), then every member of F will
satisfy Σ∪ {∀xΦn(x)}. (Of course, there exists some n such that A |= ∀xΦn(x) since
A ∈ F and A is finite. In fact, it is easy to see that n = |A| is a value for which
A |= ∀xΦn(x).) �

3. A positive example

The contrast between Theorem 1.2 (axiomatic formations of abelian groups are
varieties) and Theorem 2.1 (a variety containing a finite nonsolvable group contains
an axiomatic subformation that is not a variety) raises the question of whether every
nonabelian variety of groups contains an axiomatic subformation that is not a variety.
That is not the case. We show in this section now that the variety N p

2 of 2-step
nilpotent groups of exponent p, where p is an odd prime, is a nonabelian variety
whose axiomatic subformations are subvarieties.

Before starting, we identify the subvarieties of N p
2 . By Corollary 35.12 of [7], any

k-step nilpotent variety V is generated by its free group on k generators, which we
denote by FV(k). Therefore a subvariety V ⊆ N p

2 is generated by FV(2), which is
a homomorphic image of F = FN p

2
(2). Collecting commutators shows that every

element of F can be put in the form xayb[x, y]c where x and y are free generators and
a, b, c ∈ {0, 1, . . . , p − 1}. Hence F is a nonabelian group of order p3. Any proper
homomorphic image of F has order dividing p2, hence is abelian. This shows that any



AN AXIOMATIC FORMATION THAT IS NOT A VARIETY 5

proper subvariety of N p
2 is abelian. Of course, any subvariety must be of exponent p,

so the subvarieties of N p
2 are: the trivial variety of one-element groups, the variety of

elementary abelian p-groups, and N p
2 itself. Note in particular that any nonabelian

group in N p
2 generates the entire variety.

We now begin the task of proving that every axiomatic subformation of N p
2 is one

of the three subvarieties that we have identified.

Lemma 3.1. Let F be an axiomatic subformation of N p
2 . If F consists of abelian

groups, then F is a variety.

Proof. If F an axiomatic subformation of the variety of abelian groups, then it is a
variety by Theorem 1.2. �

Lemma 3.2. Let F be an axiomatic subformation of N p
2 . If F contains a nonabelian

group, then F contains a finite nonabelian group.

Proof. Suppose that G ∈ F has elements a and b such that [a, b] 6= 1. Let N be
a normal subgroup of G that is maximal with respect to not containing [a, b]. The
group G′ = G/N has noncommuting elements a′ = aN and b′ = bN , is in F , and
is subdirectly irreducible. Changing notation back (i.e., dropping primes), we may
assume that G itself is subdirectly irreducible.

The center of G is an elementary abelian p-group, which is also subdirectly irre-
ducible since the subgroup lattice of Z(G) is a lower interval in the normal subgroup
lattice of G. This implies that Z(G) is cyclic of prime order. Since [G,G] is contained
in the center and is not trivial, we get that Z(G) = [G,G]. Let N = 〈a, b〉 be the
subgroup generated by our chosen noncommuting elements. Since N contains the
nontrivial subgroup 〈[a, b]〉, which must equal [G,G], it follws that N is normal. Let
C = CG(N) be the centralizer of N . N is normal and finite, so C is normal and has
finite index in G. The group

K = {(x, y) ∈ G×G | xy−1 ∈ N}
is a subdirect product of two copies of G, so K ∈ F . The group

L = {(x, x) | x ∈ C}
is a subgroup of K, which is normal since N centralizes C. Thus K/L ∈ F . We now
argue that K/L is finite and nonabelian.

To see that K/L is nonabelian, it is enough to note that (a, 1) and (b, 1) are
elements of K whose commutator is ([a, b], 1) 6∈ L. To see that K/L is finite, let
{g1, . . . , gm} be a transversal for C in G. We claim that every coset of L in K has
a representative of the form (ngi, gi) with n ∈ N . Since N is finite, and there are
finitely many gi, this will show that K/L is finite. Let (x, y)L be a coset of L. Let
n = xy−1 ∈ N . Then (x, y) = (ny, y). Now choose gi so that y = gic for some c ∈ C.
Then (x, y) = (ny, y) = (ngi, gi)(c, c) ∈ (ngi, gi)L. This establishes the claim, and
completes the proof. �
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Lemma 3.3. Let F be a formation of groups. Assume that G ∈ F , H is a subgroup
of G, and M and N are normal subgroups of G. If

(i) [M,N ] = 1, and
(ii) HN,HM,HMN ∈ F ,

then H ∈ F .

Proof. Let Q be the subgroup of G×G that is generated by

(M × {1}) ∪ {(x, x) | x ∈ HN},
and let P be the subgroup of G×G that is generated by

(M × {1}) ∪ {(x, x) | x ∈ H}.
Since H ⊆ HN , we get that P ⊆ Q. Let πi : G × G → G, i = 1, 2, denote
the coordinate projection homomorphisms, and also let these symbols denote the
restrictions of these homomorphisms to Q and P . Since π1(Q) = 〈M ∪ HN〉 =
HMN ∈ F and π2(Q) = 〈{1} ∪ HN〉 = HN ∈ F , it follows that Q is a subdirect
product of two members of F . Hence Q ∈ F .

We now argue that P ∈ F . We have π1(P ) = 〈M ∪H〉 = HM ∈ F . The group

R = {(x, x) | x ∈ N}
is easily seen to be contained in Q. Moreover, R is a normal subgroup of Q, since
conjugation of an element (n, n) ∈ R (n ∈ N) by any generator (m, 1) or (a, a) ∈ Q
(m ∈ M,a ∈ HN) produces an element (n′, n′) ∈ R since [M,N ] = 1 and N � G.
Since Q ∈ F we also have Q/R ∈ F . Let ν denote the natural homomorphism of Q
onto Q/R, and also its restriction to P :

ν : P → Q/R : p 7→ pR.

We claim that ν maps P onto Q/R. This claim is equivalent to the claim that
Q = PR, which is obvious from the list of generators that we gave for each of P,Q
and R, We have thus produced two homomorphisms of P onto members of F , namely
π1(P ) = HM ∈ F and ν(P ) = Q/R ∈ F . If (a, b) ∈ P belongs to ker(π1), then
b = 1. If (a, b) ∈ ker(ν) = P ∩ R, then a = b. Thus ker(π1) ∩ ker(ν) = {(1, 1)},
proving that P is a subdirect product of the groups HM,Q/R ∈ F . Hence P ∈ F .

Since F is closed under homomorphic images, and F contains P , it also contains
π2(P ) = 〈{1} ∪H〉 = H. This completes the proof. �

As a side observation, note that Lemma 3.3 provides another proof that an ax-
iomatic formation consisting of abelian groups is a variety. For if G ∈ F and H ≤ G,
then take M = N = G in the lemma to derive that H ∈ F . Thus F is closed under
subgroups, making it a variety.

Lemma 3.4. Let F be an axiomatic subformation of N p
2 . If F contains a nonabelian

group, then F contains all finitely generated groups in N p
2 .
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Proof. From Lemma 3.2 we know that if F contains a nonabelian group, then it con-
tains a finite nonabelian group G. We first argue that F also contains all subgroups
of this group G.

If this is not the case, then let H be a subgroup of G that is maximal with respect
to the property that H 6∈ F . Choose a ∈ G−H, and let N be the normal subgroup of
G generated by a. We claim that N is abelian. This is equivalent to the claim that a
commutes with each of its conjugates b−1ab, which is in turn equivalent to the claim
that a commutes with every commutator of the form a−1(b−1ab). But commutators
are central in G, since it is 2-step nilpotent. Hence N is indeed abelian.

Apply Lemma 3.3 to this situation, taking M = N . We have (i) [M,N ] = 1 since
M = N is abelian, and also (ii) HM = HN = HMN ∈ F by the maximality of H
and the choice of M and N . Lemma 3.3 yields that H ∈ F , contrary to the choice
of H. This contradiction completes the first step of the argument.

Since G ∈ F is nonabelian, the variety that it generates is N p
2 . Therefore the

finitely generated free groups of N p
2 are finite subdirect products of subgroups of G.

We established in the first part of the proof of this lemma that all subgroups of G
belong to F . Since F is closed under finite subdirect products, it therefore contains
all the finitely generated free groups of N p

2 . Since F is closed under homomorphic
images, it follows that all finitely generated members of N p

2 belong to F . �

Lemma 3.5. Let F be an axiomatic subformation of N p
2 . If F contains a nonabelian

group, then F = N p
2 .

Proof. The lemma is based on the following.

Claim 3.6. Let E be the elementary class generated by the finitely generated free
groups in N p

2 . Each member of E is of the form F ×A where F is free in N p
2 and A

is elementary abelian. Moreover, there exist such groups in E where the rank of F is
as large as desired.

Let F be a finite free group in N p
2 . The Burnside Basis Theorem guarantees that

a subset X ⊆ F is a free generating set iff its image in the vector space F/[F, F ]
is a basis. Moreover, it is easy to see from commutator collection that when F is a
nonabelian finite free group in this variety, then [F, F ] = Z(F ). Thus, for all n > 1,
F satisfies sentences of the form σn: “if {x1, . . . , xn} is an independent set modulo
the center, then it is a free basis of the subgroup it generates”. The sentence σn is
first-order, since n-generated groups have bounded finite size in N p

2 . It follows that
all members of E satisfy all sentences σn, and therefore any member G ∈ E also has
the property that a subset Y ⊆ G freely generates a subgroup if it is independent
modulo the center. By the Compactness Theorem, for any infinite cardinal κ there
exists a group G ∈ E with a subset Y ⊆ G of size κ that is independent modulo the
center. By enlarging Y if necessary, we may assume that Y is independent modulo
the center and Y/Z(G) is a basis of G/Z(G). In this case Y generates a free subgroup
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F ≤ G that intersects each coset of Z(G). Now F ∩Z(G) is a subspace of the vector
space Z(G), hence has a complement A in this space. We have F ∩ A = {1} by the
choice of A, and FA = G since F contains a transversal for Z(G) and FA contains
Z(G). Thus G ∼= F × A where F is free of rank at least κ and A is elementary
abelian. Since κ was an arbitrary infinite cardinal, this establishes both parts of the
claim.

To complete the proof of this lemma assume that F is an axiomatic subformation
of N p

2 that contains a nonabelian group. By Lemma 3.4, F constains all the finitely
generated groups in N p

2 . Since F is axiomatic, it therefore contains E . Claim 3.6
shows that F contains groups of the form F ×A where F is free in N p

2 of arbitrarily
large rank. Any group in N p

2 is a quotient of a group of the form F × A provided
the rank of F is large enough, since any group in N p

2 is a quotient of some free F
provided the rank is large enough. Thus F contains all of N p

2 . �

Lemmas 3.1 and 3.5 combine to yield the result that every axiomatic subformation
of N p

2 is a variety.
One might imagine that an axiomatic formation generated by the finite members of

a locally finite variety would be forced to contain the infinite members of the variety.
If this were true, then our argument could have ended with Lemma 3.4. But notice
that the axiomatic formation generated by the finite members of the variety of meet
semilattices consists only of semilattices with a least element, hence does not contain
all the infinite members of the variety. Thus Lemma 3.5 is really an essential part of
the argument.

We close this paper with a refinement of the question of Gaglione and Spellman.

Question 3.7. Which (finitely generated) varieties of groups have the property that
all axiomatic subformations are subvarieties?
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