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1. INTRODUCTION

In 1954, A. I. Mal’cev published [5], which contains the result that all
members of a variety of algebras have permuting congruences if and only
if the variety satisfies the equations

plx, x, )=y and plx, v, y)xx

with respect to some ternary term p(x, y, z). This paper initiated the study
of so-called Mal’cev conditions which postulate the existence of terms
satisfying certain equations. Since Mal'cev’s paper, many algebraic proper-
ties of varieties have been shown to be equivalent to Mal’cev conditions;
e.g., congruence modularity, congruence distributivity, congruence
n-permutability. One might say, with little exaggeration, that the general
problem of classifying varieities has become synonymous with the study of
Mal’cev conditions.

In the early 1980’s, Ralph McKenzie and his student David Hobby
developed a structure theory for finite algebras and locally finite varieties
which they call tame congruence theory. In their book [4], they show that
for locally finite varieties many of the propertics known to be definable
by Mal’cev conditions were equivalent to local structural properties
holding for each member of the variety. Chapter 9 of [4] includes tame
congruence-theoretic characterizations of congruence modularity, and
congruence distributivity, as well as other well-known congruence
conditions. What is important for us in this paper is that this chapter
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LOCALLY FINITE VARIETIES 37

includes a tame congruence-theoretic characterization of the property that
a locally finite variety is congruence n-permutable for some n. This
chapter does not include a characterization of the locally finite varieties
which are congruence n-permutable for any specific value of », but a
plausible characterization of the congruence permutable (= congruence
2-permutable) locally finite varieties is suggested in Exercise 8.8 (1).

The question of whether the condition suggested by Hobby and
McKenzie characterizes congruence permutable locally finite varieties
remained open until 1989. While studying a completely different question,
P. Idziak proved that a finite algebra which fails to have permuting
congruences, but generates a congruence modular variety, has a pair of
non-permuting congruences «, f which cover their meet: a A f<a, .
{McKenzie later removed the congruence modularity hypothesis.)
M. Valeriote and R. Willard saw a connection between this result and the
Hobby-McKenzie problem and soon produced a proof that the condition
suggested in 8.8 (1) of [4] characterizes congruence permutable varieties.
Their proof appears in [8].

The Idziak—McKenzie result, on which the arguments of Valeriote and
Willard hinge, is false for n-permuting congruences for any value of n> 2.
For example, the semilattice (2({x, y}); n > has congruences a, f which
fail to 3-permute, but has no such x and g satisfying « A f <a, 8. This led
Valeriote and Willard to pose the problem of discovering a tame con-
gruence-theoretic characterization of locally finite congruence 3-permutable
varieties. In this paper, we present such a characterization as well as a
proof of the Valeriote-Willard Theorem which does not require the
Idziak—McKenzie result. We finish the paper with an example which shows
that, in a narrow sense, there is no “tame congruence-theoretic charac-
terization” of congruence n-permutable locally finite varieties for n > 4.

Our reference for tame congruence theory is, of course, [4], while our
reference for universal algebra is [7]. If « and f are binary relations on the
same set, then we will use the notation ao, § to denote the relation

aoﬂoao

which is an iterated composition of « with § which begins with o and has
n—1 occurrences of =. If « and f are equivalence relations, we say that «
and B n-permute if a v f=0a-,=p-,a If A is an algebra, we say that A
i1s congruence n-permutable if any pair of congruences on A n-permute. A
variety ¥~ is congruence n-permutable if each member is. The statement
that an algebra or a variety is congruence n-permutable may be written as
a congruence equation or an inclusion:

A F:COI"I a v ﬂza”nﬂ or 1 ’ ':con aonﬂgﬂnn o.
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A tolerance on A is a reflexive, symmetric subalgebra of A x A. We will
express the fact that an algebra or a variety satisfies a tolerance inclusion
or equation by writing, say,

AF,OITO"TETC”,lT or 1ﬁﬂ}:lol‘ronll:z‘tcn—l7:'

2. n-PERMUTABILITY

THEOREM 2.1. For a variety ¥  and an integer n>=2 the following
conditions are equivalent .

(1) ¥ is congruence n-permutable.

(i) ¥ has terms p;(xy, .., X,), i =0, 1, ..., n, such that

¥ po(X) = X0
Pi(X0, X3y Xay Xgy Xay )R Py (Xg, Xg, Xoy X4y Xgs o) for i even
Pilxy, Xy, X3, X3, X5, )R Pis 1 (Xy, X0, X3, X3, Xg, .00) foriodd
Pr(X)x X,
(i) ¥ T, TSTo, ;T

Proof. The proof that (i) implies (ii) is a standard type of argument.
We must show that if ¥ =, 0°, ¥ Syo, 0, then ¥ must have the terms
described in (ii). On F=F, (xg, .., x,) let 8=CgF((xq, x,), (X1, X3), ...)
and let ¢ = CgF((x,, x;), (x5, X4), ...). We have (xq, x,) €00,y Sy, 0, so
there are elements x, = py, Py, .-» X,, = p, such that (p;, p;, )€y for i even
and (p;, p;,,)e8 for i odd. If we let p,(X) be a term representing the
element p,, then this last conclusion is equivalent to the fact that the p,(x)’s
satisfy the equations in (ii).

Now, let’s assume (ii) and prove that to,t1<1t0, 1. If (¢, b)eTe,T1,
then we can find a sequence xg, x|, .., x,, such that ¢=x,, b=x,, and
(x;, x;,.1)et for all i<n. Since 7 is a tolerance, for i=1 to n— 1 we have

p?z((xo’ X )9 (xz, Xy )v (XZ’ X3), ey (x_ja xk)’ (xna xn))
= (P?(xm Xy X2s s xi’ X,,), piA(xl’ Xps X3y ooy X Xn))
=(y;,2,)€eT,
where (j,k)=(n—1,n) if nis odd and (j, k)=(n,n—1) if n is even. The
equations of (ii) imply that a= y,, z;,=z,, ,fori<rn—1o0dd, and y,= y,,

for i<n—1 even, while z, _,=b. Thus atz, =z,Ty,= y312;=2,7---1h,
implying that (a, b)eto,_, T
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We must show that (iii) implies (i) to finish the proof. Assume (iii) and
choose Ae ¥ with congruences «, e Con A. The relation 7= (a-f)n
(f-a) is a tolerance on A. Clearly

cvfctcav f,

so, by (il1), 7-,_, t 1s a congruence which is necessarily equal to o v f;
therefore

dV‘[)”:T?" ITQ(C(C‘B)"” l(ﬂja)zacnﬂgavﬂ'
The congruence equation a v f=a-, f§ establishes (i). |

In Exercise 8.8 (1) of [4], one is asked to show that if A is a finite
algebra in a congruence permutable variety, then A satisfies the condition
that for all x < f§ in Con A and for all (a, b)e f — a there is a u= b (mod «)
with {a,u} =N for some (a, f)-trace N. The authors of [8] dub this
condition “the HM condition” and prove that a locally finite variety ¥ is
congruence permutable if and only if each finite A e ¥" satisfies the HM
condition and the condition that typ{A} ~ {1,5} = .

We will write T, ; to denote the reflexive relation that is generated by the
squares of all the {a, f)>-traces:

T,s=1{(x,x)eA?|xeA}u {N?|Nisan (o, f)-trace}.

One can rewrite the HM condition as simply =T, s-a for all a<f
in Con A. We define an analogous property satisfied by algebras in
congruence n-permutable varieties for all n> 2.

DerFNITION 2.2, If A is a finite algebra, then A satisfies the condition
HM, if B=p-, | p whenever a<fin Con A and p = (T, zoa)n(x-T, )
A class of algebras satisfies the condition HM,, if all of its finite members
do.

We are interested primarily in HM, and HM, in this paper. The
condition HM, implies that when o < f# we have

B=p=(T,poo)n(a-T, )T, o0 f

or just B=T, zoa. Conversely, if =T, s-a, then f=B" = (T, yoa)” =aoT, 4
sO
= (Tz.[ica)m (oo T:./;) =p.

Thus, the HM condition is equivalent to the condition HM,. The
condition HM, implies that

B=p p=(T,pgoa) (T, 5)=T,p 0T,z Sf
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or that f=T, goaT, ;. This means that if (x, y)e f we can find (u, v)ex
such that x=u or {x,u} is contained in an <{ao, §)-trace and v=1y or
{v, ¥} is contained in an {a, #)-trace. This is all that we will need to know
about HM; to prove our main theorem, Theorem 2.5.

THEOREM 2.3. Every congruence n-permutable locally finite variety
satisfies the condition HM .

Proof. We will show that p=(T,g°a)n(x-T,,) is a tolerance. Of
course, p is reflexive and symmetric; we need to show that it is a sub-
algebra of A°. For this it will suffice to prove that T, s>« is a subalgebra,
for then p=(T, gjoa)n (T, zoa)" is an intersection of subalgebras.

Choose (a,;, b,)e T, ;-%, i<k, and r a k-ary term. We need to verify that
(t*(a), t*(b))e T, 4o Find ¢, such that for all i<k

a,T, gc.ab,.

Pick an (a, #)-trace N and (1, v)e N? —a. From Theorem 9.14 of [4] we
know that typ(a, )€ {2, 3}. Consequently, N = A|, has a Mal’cev polyno-
mial and so N2=Cg™(u, v)-a|, and

CgNu, v)= {(p(u), p(r))e N*| pePol, A|\}.

{See [7], Theorem 4.70(ii) for this last conclusion.) Any two {a, f§ >-traces
are polynomially isomorphic, so
T,p={(x,x)eAd?|xe A} U {N*|Nisan (a, f)-trace}
< {(p(u). p(v))e 42| pePol, A} -2,

This means that we may choose polynomials p,(x)e Pol, A such that g, =
pi(u) and p,(v) ac,. Hence 1*(a) = t*(p;(u)) = g(u) while t*(¢) ar*(p,(v)) =
g(v) where g{x)=1t*(p,(x))ePol, A. If (g(u), g(v))ea, then r*(a)ur*(h)
in which case we are done. Otherwise, g(N) is an {a, f>-trace and so
(g(u)’ g(U))E Tu./i and

18(a) = g(u) T, ;g(v) at*(¢) ar*(b).

In either case, (1*(a), 1*(b))e T, 4.

Now that we have shown that p=(T, soa)n(x-T,p) is a tolerance,
Theorem 2.1 proves that p<, , p is a congruence. p is contained in § and
properly contains %, so p,_, p=pf and the condition HM,, holds. |

Next we prove a generalization of Theorem 8.1 of [3] which will be used
in a small way in the proof of our main result, Theorem 2.5. For the next
theorem we will use the notation that a!® =a and al**!'1= [al*1 40¥1].
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The proof uses Theorem 8.1 of [3] which states that when A generates a
congruence modular variety and «, f€Con A, then x permutes with f§ if
and only if a'*1 permutes with B for some &, /> 0.

THEOREM 2.4. If A generates a congruence modular variety and o and 8
are congruences on A, then av B=ac,f if and only if «'1 v Bl =
atV- B for some I, m = 0.

Proof. We will prove only that av ff=a-, 8 if and only if
[2, 2] v B=[22]:, B From our argument it will be clear how to show
that v f=x:,f if and only if av [B, fl=x2-,[fS, ] and then an
obvious induction establishes the theorem. As Theorem 8.1 of [3] proves
the result for n =2 we will only consider n > 2.

The congruences [a, o] and [«, 2] v f are comparable, so they permute.
By Theorem 8.1 of [3], » permutes with [a, a] v B, so

ac ([ 2] v =[x, 2] v f)ra=av ([, a] v f)=avp.

If [,a] v B=[aa}-,p then a v f=a([o, ], f)s 2=, . Thus, one
of the desired implications,

[2, 2] v =[x, 0], f—=av B=a:,f,

has been proved.

Now assume that x v f=a-,f. A generates a congruence modular
variety, so we can find a ternary term ¢(x, y, =) such that for all x, ye 4 we
have t(x, v, ¥)=x and

1(x, x, y)[Cg*(x, ¥), Cg*(x, ¥)] ».
Hence, if (x, y)e foa is arbitrary and xfuoy, then
xot(x, u, v) fe(u, u, y)fa, a] y,

which proves that fcaCaofi<[a,a]. If n>2 is odd an easy induction
argument shows that

xo, f=aofo o ooefoas(fea)
So-fooafooc (o [ a])
Socfo - oanfolaalofo 2]
Suo(fo, ([ al)Sar,
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or just -, f=ac(fo, [a a]). If n>2 is even we find similarly that

%o, f=ocfo o foas(foa) B
Saofo - ofean(aefoo,al):f
Soofo - ofofo,alo oo, a]ep
cac(fe, ([aa])sa0, B

or again X, ﬂ =ae (ﬂ “n—1 [a’ (1])
Now suppose that av f=a-, f=a=(f-, [« a]). Choose (a, b)e
[a,a] v cav B=ac(f>, [ 2]). Wecan find y,, i <n, such that

a=yoay, fylo, al yy---y,=b.

Now, (yo, yi)exan([a,a] v ) which equals [a,2]v(xap) by
modularity. But o and « A § permute so, by Theorem 8.1 of [3], [«, a]
and « A B permute. This gives us that (y,, y,) e[z a]=(x A )< [a, 2] B.
There is a z€ 4 such that

Yola, a] 2By,
and so
a=yola, a] zBy,[2, 2] y3---y,=b.

That is, (a, b)e [a, a]e, . The pair (a, b) v f was chosen arbitrarily, so
[o, 2] v B = [a, 2] <, B which finishes the proof of the implication

av By o L] v = [0 a]o0fe )

THEOREM 2.5. For n=2,3, a locally finite variety is congruence
n-permutable if and only if for each finite Ae ¥,

(i) typ{A}<{2,3},
(1) for each a < f in Con A, the {a, B)-minimal sets have empty tail,
and

(1i1) A satisfies the condition HM,,.

Proof. We will write the proof for the value n=3 and include
parenthetical remarks to show where the argument is different when n=2.

¥" is congruence n-permutable and also congruence modular since n =3
{n=2). It follows from Theorems 8.5 and 9.14 of [4] that (i) and (ii) hold.
Theorem 2.3 shows that condition (iii) holds.

Conversely, suppose that ¥ satisfies (i), (ii), and (iii). Again,
Theorem 8.5 of {4] implies that ¥~ is congruence modular. In order to
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obtain a contradiction assume that ¥~ contains an algebra A which has
congruences f§ and 4 such that § v d # ff-, 8. We can choose A to be finite
and choose  minimal for a non-equality of the form 8 v é # -, §. Hence
if « 1s a fixed lower cover of i, then we have av y=a-,y for any
v € Con A. Now we may assume that J is maximal for B v § # S, 6 for this
fixed value of B. We cannot have <, since  and  do not permute. The
minimality of f§ implies that ¢ v 0 = x5, J so, if « & J, the maximality of §
implies that

Bvo=fvi{avi)=f-(asdca)sf=F:6°f
(Bvé=Bv(avd)=p-(acd)=Fc5)
which is false. Hence x < J. Let 0 = v é; by modularity, 6 <86.

Now, v é#B-,5 but a v d=uac-,5 We cannot have typ(a, f)=2 by
Theorem 2.4 applied in A/x. Hence 3 = typ(a, )= typ(d, 8). The members
of Min,(x, )= Min, (J, ) are two-element sets, each constituting a trace.
From this we get that T, ,=T, ;< f. Condition (iii) implies that

ﬂ Vv (S=0= Ta.t;“(sc T&HZ Ta‘ﬁofso TvﬂSﬂO(SOﬂ,
(fvo=0=T;,00=T,3:0<fo8),

which is contrary to our assumption. ||

3. REMARKS AND REFORMULATIONS

The principal result of [8] is more than just a characterization of the
locally finite congruence permutable varieties; it is a statement about
individual algebras. The authors of [8] prove that any finite algebra with
type-set contained in {2, 3,4} is congruence permutable if it satisfies the
HM condition. One can strengthen our result concerning congruence
3-permutability to a similar statement:

THEOREM 3.1.  If A satisfies the condition HM; and type{A ) < {2, 3, 4},
then A has 3-permuting congruences.

An alternate local reformulation of Theorem 2.5 is the following.

THEOREM 3.2.  For a finite algebra A and for n=2,3 if 1 ¢typ{A} and
HS(A?) satisfies the condition HM,,, then A has n-permuting congruences.

The arguments for these results are a bit longer than our proof of
Theorem 2.5 and are nearly identical to those supplied by Valeriote and
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Willard in [8]. Since the results claimed here are stronger than
Theorem 2.5 we will prove Theorems 3.1 and 3.2 in this section.

The essential difference between our approach to Theorem 3.1 and the
proof of Valeriote and Willard in the 2-permutable case is that some
substitute must be found for the Idziak—McKenzie Theorem. This is the
theorem that states that a finite algebra with a pair of non-permuting con-
gruences has a pair of non-permuting congruences satisfying « A f<a, f.
A suitable substitute is the following.

LeMMA 3.3, If the finite algebra A has a pair of congruences which fail
to 3-permute, then one can find a pair B, é for which v 6 & B+6-f and
which satisfy B A d<f§ and either B A 0 < or §<f v 4.

Proof. Assume that A has a pair of congruences which fail to 3-permute
but has no such pair of congruences where each covers their meet. We will
show that A has a pair of congruences ff and J for which v é & f-5-8,
BAd<pB, and d<f v 0.

First assume that A has congruences «, 8, and  where a A 8 <a, 0,
but <y <av O Choose (a b)ey—6. Since (a,bleav@=0-a-0
there are elements u,ve A such that aBuavfb. Hence, ubaybfv and so
{(u,v)ey A a<B. This forces (a, b)e8 which is false. It follows that the
congruence lattice of A satisfies the implication

AAB<a, 00, 8<av 8.

This fact is precisely the statement that A has a semimodular congruence
lattice. Induction on the height of the congruence lattice establishes the
apparently stronger implication that

UAd<a—-0=<0ov 6.

(The argument for this is well-known. It is a consequence of Theorem 3.7
of [1], for example.) Now we can mimic the argument in the third
paragraph of Theorem 2.5 which shows that since A contains a pair of
congruences that fail to 3-permute, there is a pair of congruences f and ¢
where fv d & foécf and f A 6 < f. By semimodularity, d < v 8. This
is what we set out to prove. |

The next lemma is similar to Lemma 3.3 of [8].
LeEMMA 34. Let A be a finite algebra with congruences f3, and & where

0<Pvd=0 and typ(d,0)e {2,3,4}. Suppose that the prime quotient
{8, 0) satisfies the condition HM,. Then f v 6=§-5-.

Proof. Choose an arbitrary pair (a,b)effv =0 and then choose
u, ve A such that aT; yu évT; ob. If a#u and v # b, then there are (4, 8 )-
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traces N and N’ such that {a, u} € N and {v, b} = N'. Assume for now that
this is the case. Choose <4, #>-minimal sets U and U’ which contain N and
N', respectively, and let B and B’ be their respective bodies. Since the type
of the quotient {J,8) is 2, 3, or 4 the algebras A|z, and A|, are
congruence permutable.

Both ¢ and u« belong to N so (a, u) € 0] 5 and similarly (v, b) € 8| 5. Hence
(a,b)e(B|g)-0-(8|g). From Lemma24 of [4] we know that since
8=pv o we have 6|z=f|5v |5 in ConAl, As Al is congruence
permutable, it follows that this join is equal to Blz-d]5. A similar
argument shows that 8|z =0|z°f|s. Hence, (a,u)eBig-0]zS -0 and
(v,b)ed|gB|p<=dsfB. This conclusion is valid even in the cases when
a=u or v=>b. We conclude that in all cases (@, h)e(fo0)cd-(5-f)=
f-0cp as required. |

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. By combining Lemmas 3.3 and 3.4 we find that
it suffices to prove that if typ{A} < {2, 3,4} and A satisfies the condition
HM,, then congruences « and f in Con A which cover their meet must
3-permute. (The reason for this is that the other possibility mentioned in
Lemma 3.3 is ruled out by Lemma 3.4.)

Let « and f§ be a pair of congruences on A where each covers their meet
and let y and 8 be their meet and join, respectively. Choose congruences a
and f’ such that a<a’' <G and < ' <6. If o' A ' #7, then the congruen-
ces a, f#, and a’ A B’ generate a sublattice of Con A isomorphic to the
lattice D, as pictured in Fig. 1. This contradicts Lemma 6.4 of [4] since A
omits type 1. Thus o’ A 8’ =7. By Lemma 3.4, using the congruences « and
B’ with ' <a v B’ =8 we conclude that 8 = a- - «. Using the congruences
f and 2" with o’ < 6 we get 8 = fca’< f. We will finish the proof by showing
that the previously established facts 8 =a v f=0of ca=fca'«ff, a <o,
f<f,and o' A B'=a A B imply that 0 =aofca=foa-f.

Choose an arbitrary pair (a, b)ef and then choose u, ve 4 such that
aouff'vab. Since f'< 0= f-a’ - f, we can find p, ge A such that ufipa’'qpu.

[}
aVv(aApB) BV (aAf)

o B

v

FIGURE 1
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But now, (p,q)ea’'n(Bof'-f)ca’ A =p. Hence (u,v)ef and so
(a,b)eacfoa. The pair (a, b)e 8 was arbitrary, so 8 =o- foa. The facts
we used from the previous paragraph came from a list of facts symmetric
inaand f$,so §=f-a-p, too. |

It turns out that all finite distributive lattices and all finite semilattices
satisfy the condition HM,, but not all satisfy HM; or HM,. These failures
can be interpreted into any locally finite variety which admits the lattice or
semilattice type by using the technique described in Theorem 6.17 of {4].

LemMa 3.5. If A is a finite algebra and HS(A?) satisfies the condition
HM,, for n=2 or 3, then typ{A} < {1,2,3,4}. If HS(A®) satisfies the
condition HM,, for n=2 or 3, then typ{A} < {1, 2,3}.

Proof. We will only prove the first statement. The second can be
proved in a similar fashion and in any case is not needed anywhere in this
paper.

Assume that A has a prime congruence quotient of type 5. Then some
homomorphic image of A, call it B, has a minimal congruence a where
typ(0, 2) = 5. We will show that some subalgebra of B? fails the condition
HM ;. Since HM is weaker than HM, and S(B?) = HS(A?), this will finish
the proof.

Let U be a (04, 2 >-minimal set with body equal to N= {0, 1} and let
ec E(B) be an idempotent unary polynomial for which e(B)=U. If 4
denotes the set of diagonal elements of B2, define R = Sg®(N2u 4). We
will show that R fails HM,;.

The algebra R is closely examined in Theorem 5.27 of [4] and we will
quote facts about R directly from the proof of that theorem. Let a=(1, 1),
b=1(0,1), c=(1,0), and d=(0,0). Let f=Cg®(c, d) and 6=Cg®((a, c),
(b, d)). Let ¢'(x, y)=(e(x), e(y)) be the idempotent unary polynomial of R
which is just e acting coordinatewise and let U’ =e¢’(R). By Theorem 5.27
of [4] we have 0, <f and 6<f v 6=0 and (a, b)e 8 — 4. To show that
HM, fails in R we will prove that (a, b)e 8 — (T 4000 T5 ).

Our argument will require certain facts about R | ,: which we collect here.
N?={a,b,c,d} is a 0|, ~class since

Nzga/()|b,,g(l, l)/(axa”u'lmg(U(ale(m))x(1/(‘1‘(:(3)))=N2~

R|,: is polynomially equivalent to the square of the 2-element semilattice
by the last paragraph of Theorem 527 of [4]. The only non-trivial
B ye-class is {c, d}; the non-trivial §|,:-classes are {a,c} and {b,d}.
This follows from the description of the congruences on R|,: given in the
claim of Theorem 5.27. Finally, (T 4)|n2= T, 4,.- This follows from the
definition of R|,: and of T, .
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Since R| .2 is polynomially equivalent to a 2-element semilattice, it is a
matter of straightforward computation to verify that

Tsiv. 0= {(c, d), (d, ¢), (a, a), (b, b), (c, ¢), (d, ) }.

A consequence of this and the facts of the last paragraph is that (a, x),
(b, ¥)e(T;4)| - implies that x =4 and y=5b. We are now in position to
conclude our proof that {(a, b)e 0 — (T 4°0°Ts4).

Clearly we have (a, b)e dc <5 = 0. Assume that aT’s gu ovT; ¢b. Then

a=e'(a)e'(T; ) e'(u) de'(v) €'(T5 ) €'(h) = b.

The definition of T;, implies that e'(T54)Ed|y U Ts4ly- Since
{a, €' (u))ee'(Ts4) = Tsel v we get either (a, e'(u))€d or, by the last
paragraph, a = ¢’(u). Both cases tell us that (g, ¢’(«)) € 6 and a similar argu-
ment shows that (e'(v), b)e é. Hence (a, b) e d< 6 =0 which is false. This
contradiction shows that the condition HM; fails in R. ||

Theorem 3.2 is a corollary of Lemma 3.5 and either Theorem 3.1 in the
3-permutable case or Theorem 3.4 of [8] in the 2-permutable case. From
Theorem 3.2 we obtain stronger versions of Theorem 2.5.

COROLLARY 3.6. For n=2,3, a locally finite variety is congruence
n-permutable if and only if for each finite Ae ¥,

(i) 1¢typ{A} and
(i) A satisfies the condition HM,,.

It is still true that in a congruence 2- or 3- permutable variety all the
{a, B>-minimal sets have empty tail as is stated in Theorem 2.5(ii).
Conversely, this condition holding throughout a variety ¥~ implies that
1¢typ{¥"}. (This is proved in Theorem 5.4 of [6].)

COorROLLARY 3.7. For n=2,3, a locally finite variety is congruence
n-permutable if and only if for each finite Ae ¥,

(i) for each x < p in Con A, the {a, B>-minimal sets have empty tail,
and

(i1) A satisfies the condition HM,,. |

None of the sets of conditions described in this paper characterize
congruence »-permutable locally finite varieties for n>4. We have seen
that for any fixed » a congruence n-permutable variety must have a type-set
contained in {2,3} and must satisfy the condition HM,. These are the
only tame congruence-theoretic properties of congruence n-permutable
varieties that we know. However, these conditions are not enough to
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characterize congruence n-permutability for any n >4 as the next example
shows.

ExaMpLE 3.8. Let L be the nth power of the two-element lattice and let
C denote the set of elements in some fixed maximal chain in L. Let F be
the set of all operations on L which are compatible with the lattice
congruences of L and which preserve C. Let A be the algebra {(L; F) and
let C be the subalgebra of A whose universe is C.

First, let’s show that for ¥" = ¥7(A) we have typ{¥"} < {2, 3}. Since F
contains the lattice operations, ¥~ is congruence distributive. A has the
same set of congruences as L, so A is a product of n two-element algebras.
It follows from congruence distributivity that ¥~ is residually <2. One can
check that each of these two-element algebras is primal, so they each have
type-set equal to {3}; thus, typ{¥ '} = {3} = {2, 3}.

Now we show that ¥~ satisfies the condition HM,. Choose a finite
algebra De¥" and congruences a<pf in ConD. The proof of
Theorem 10.16 of [2] shows that, since ¥ is generated by two-element
algebras, each S-class contains at most two different a-classes. Any <{a, f>-
trace must connect two different a-classes in some fS-class and any f-class
is connected, modulo «, by the {a, § >-traces that it contains. From this it
follows that ae T, yca=f. If p=(T, goa)n(a-T,p), thenau T, ;< p, s0

B=acT,poaSpepspsf.

Since f is equal to popop whenever x<f in Con D and D was chosen
arbitrarily, ¥~ satisfies HM .

Finally, we must show that ¥~ is not congruence n-permutable. To do
this we will exhibit a pair of congruences on C which do not n-permute.
Write C= {x,, .., x,,} for the universe of C where the elements are num-
bered so that x,< --- <x, in L. The equivalence relations, 8, , on C
generated respectively by {(x,, x,), (x5, X3), ..} and {(x, x,), (x5, X4), ...}
are congruences on C for which 6o , ¢ # o, 6.

The variety described in Example 3.8 is a finitely generated, congruence
distributive variety of type-set {3} which is residually <2. This variety is
essentially of finite type, since Clo A contains a 3-ary near unanimity
operation derived from the lattice operations on A. Thus, even in the nicest
possible situation we find that the condition HM, fails to characterize
congruence n-permutability for any fixed n>4. This leads us to ask the
following.

Question 1. For which n is there a tame congruence-theoretic charac-
terization of congruence n-permutability for locally finite varieties?

This question may be unanswerable since it is not clear what is meant by
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a “tame congruence-theoretic characterization.” Tame congruence theory is
a study of induced algebras corresponding to pairs of congruences o < f# on
a finite algebra where the interval I[«, f] is tame. The viewpoint of this
paper is that congruence n-permutability is a statement about tolerances.
Therefore, a narrow reframing of Question 1 is the following.

Question 2. For which # is the following state true? Let ¥~ be a locally
finite variety whose type-set is contained in {2,3}. The condition
Al Te, 110, 1 for all finite Ae¥” and for all tolerances t holds if
and only if it holds for those t satisfying « = 1< § whenever I[a, 8] is a
tame interval in Con A,

Question 2 asks for those n for which the tolerance equation
¥ Ewte,Tx15, ;T can be deduced from its instances where 1 is
“trapped” inside a tame interval of Con A for A finite. The answer to
Question 2 is “only for n=2 or 3. The statement in Question 2 is true
when n =2 or 3 by Corollary 3.6. On the other hand, Example 3.8 provides
a counterexample to the statement in Question 2 for each n>4. So,
if we adopt a sufficiently narrow interpretation of the phrase, we find that
there is no “tame congruence-theoretic characterization” of congruence
n-permutable locally finite varieties for n > 4.
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