Strong Induction, Course-of-values Recursion

Theorem.

Theorem. (Page 44)

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If $\varphi(0)$ is true

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If $\varphi(0)$ is true

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\textcircled{0} \quad ((\forall k \leq n) \varphi(k)) \text{ implies } \varphi(S(n)),$

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\textcircled{0} \quad ((\forall k \leq n) \varphi(k)) \text{ implies } \varphi(S(n)),$

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- ${\small \bigcirc } \ \varphi(0) \text{ is true and }$
- $\textcircled{0} \quad ((\forall k \leq n) \varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- ${\small \bigcirc } \ \varphi(0) \text{ is true and }$
- $\label{eq:product} \textcircled{2} \ ((\forall k \leq n) \varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\varphi(0)$ is true and
- $\textcircled{0} \quad ((\forall k \leq n)\varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Idea of proof. Let $\theta(x)$ be " $((\forall k \leq n)\varphi(k))$.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\varphi(0)$ is true and
- $\textcircled{0} \quad ((\forall k \leq n)\varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Idea of proof. Let $\theta(x)$ be " $((\forall k \leq n)\varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\varphi(0)$ is true and
- $\textcircled{0} \quad ((\forall k \leq n)\varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Idea of proof. Let $\theta(x)$ be " $((\forall k \leq n)\varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \Box

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\varphi(0)$ is true and
- $\textcircled{0} \quad ((\forall k \leq n)\varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Idea of proof. Let $\theta(x)$ be " $((\forall k \leq n)\varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \Box

Example.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\varphi(0)$ is true and
- $\textcircled{0} \quad ((\forall k \leq n) \varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Idea of proof. Let $\theta(x)$ be " $((\forall k \leq n)\varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \Box

Example.

Define the Fibonacci sequence by $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$.

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

- $\varphi(0)$ is true and
- $\textcircled{0} \quad ((\forall k \leq n)\varphi(k)) \text{ implies } \varphi(S(n)),$

then $\varphi(n)$ is true for all n.

Idea of proof. Let $\theta(x)$ be " $((\forall k \leq n)\varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \Box

Example.

Define the Fibonacci sequence by $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$. Show that

$$\left(\frac{3}{2}\right)^n \le F_{n+1} \le 2^n.$$

Theorem.

Theorem. (Page 50)

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A.

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

•
$$F(0) = a$$

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

•
$$F(0) = a$$

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

•
$$F(0) = a$$

2 $F(S(n)) = G(F|_{S(n)}, n).$

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

•
$$F(0) = a$$

2 $F(S(n)) = G(F|_{S(n)}, n).$

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

1
$$F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.)

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

Ideas of proof.

• Show that is A is a set, then A^* is a set.

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

Ideas of proof.

• Show that is A is a set, then A^* is a set.

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet \ F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

- Show that is A is a set, then A^* is a set.
- Apply ordinary recursion to define the function $E \colon \mathbb{N} \to A^*$ where $E(n) = (F(0), F(1), \dots, F(n)).$

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet \ F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

- Show that is A is a set, then A^* is a set.
- Apply ordinary recursion to define the function $E \colon \mathbb{N} \to A^*$ where $E(n) = (F(0), F(1), \dots, F(n)).$

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet \ F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

- Show that is A is a set, then A^* is a set.
- Apply ordinary recursion to define the function $E \colon \mathbb{N} \to A^*$ where $E(n) = (F(0), F(1), \dots, F(n)).$
- \bigcirc Use E to define F.

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet \ F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

- Show that is A is a set, then A^* is a set.
- Apply ordinary recursion to define the function $E \colon \mathbb{N} \to A^*$ where $E(n) = (F(0), F(1), \dots, F(n)).$
- \bigcirc Use E to define F.

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet \ F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

Ideas of proof.

- Show that is A is a set, then A^* is a set.
- ② Apply ordinary recursion to define the function E: N → A* where E(n) = (F(0), F(1), ..., F(n)).
- \bigcirc Use E to define F.

Example.

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^* be the set of finite sequences of elements of A. If $G: A^* \times \mathbb{N} \to A$ is a function, then there is a unique function $F: \mathbb{N} \to A$ satisfying

$$\bullet \ F(0) = a$$

• $F(S(n)) = G(F|_{S(n)}, n)$. (Here $F|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \dots, F(n))$.)

Ideas of proof.

- Show that is A is a set, then A^* is a set.
- Apply ordinary recursion to define the function $E \colon \mathbb{N} \to A^*$ where $E(n) = (F(0), F(1), \dots, F(n)).$
- \bigcirc Use E to define F.

Example.

Define the Fibonacci sequence by $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$.