Strong Induction, Course-of-values Recursion

Strong Induction

Strong Induction

Theorem.

Strong Induction

Theorem. (Page 44)

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
c2 $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
c2 $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and

C2 $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof. Let $\theta(x)$ be " $(\forall k \leq n) \varphi(k))$.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof. Let $\theta(x)$ be " $(\forall k \leq n) \varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof. Let $\theta(x)$ be " $(\forall k \leq n) \varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \square

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof. Let $\theta(x)$ be " $(\forall k \leq n) \varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \square

Example.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof. Let $\theta(x)$ be " $(\forall k \leq n) \varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \square

Example.
Define the Fibonacci sequence by $F_{0}=F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$.

Strong Induction

Theorem. (Page 44) Assume that $\varphi(x)$ is a formula. If
(1) $\varphi(0)$ is true and
(2) $((\forall k \leq n) \varphi(k))$ implies $\varphi(S(n))$,
then $\varphi(n)$ is true for all n.
Idea of proof. Let $\theta(x)$ be " $(\forall k \leq n) \varphi(k))$. Applying ordinary induction to $\theta(x)$ has the effect of applying strong induction to $\varphi(x)$. \square

Example.
Define the Fibonacci sequence by $F_{0}=F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$. Show that

$$
\left(\frac{3}{2}\right)^{n} \leq F_{n+1} \leq 2^{n}
$$

Course-Of-Values Recursion

Course-Of-Values Recursion

Theorem.

Course-Of-Values Recursion

Theorem. (Page 50)

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.
(2) Apply ordinary recursion to define the function $E: \mathbb{N} \rightarrow A^{*}$ where $E(n)=(F(0), F(1), \ldots, F(n))$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.
(2) Apply ordinary recursion to define the function $E: \mathbb{N} \rightarrow A^{*}$ where $E(n)=(F(0), F(1), \ldots, F(n))$.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.
(2) Apply ordinary recursion to define the function $E: \mathbb{N} \rightarrow A^{*}$ where $E(n)=(F(0), F(1), \ldots, F(n))$.
(3) Use E to define F.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.
(2) Apply ordinary recursion to define the function $E: \mathbb{N} \rightarrow A^{*}$ where $E(n)=(F(0), F(1), \ldots, F(n))$.
(3) Use E to define F.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.
(2) Apply ordinary recursion to define the function $E: \mathbb{N} \rightarrow A^{*}$ where $E(n)=(F(0), F(1), \ldots, F(n))$.
(3) Use E to define F.

Example.

Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, $a \in A$, and let A^{*} be the set of finite sequences of elements of A. If $G: A^{*} \times \mathbb{N} \rightarrow A$ is a function, then there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$.
(2) $F(S(n))=G\left(\left.F\right|_{S(n)}, n\right)$. (Here $\left.F\right|_{S(n)}$ is considered to be the sequence $(F(0), F(1), \ldots, F(n))$.

Ideas of proof.
(1) Show that is A is a set, then A^{*} is a set.
(2) Apply ordinary recursion to define the function $E: \mathbb{N} \rightarrow A^{*}$ where $E(n)=(F(0), F(1), \ldots, F(n))$.
(3) Use E to define F.

Example.

Define the Fibonacci sequence by $F_{0}=F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$.

