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Strong Induction

Theorem. (Page 44) Assume that φ(x) is a formula. If

1 φ(0) is true and
2 ((∀k ≤ n)φ(k)) implies φ(S(n)),

then φ(n) is true for all n.

Idea of proof. Let θ(x) be “((∀k ≤ n)φ(k)). Applying ordinary induction to
θ(x) has the effect of applying strong induction to φ(x). 2

Example.
Define the Fibonacci sequence by F0 = F1 = 1 and Fn+2 = Fn+1 + Fn.
Show that (3

2

)n

≤ Fn+1 ≤ 2n.
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Course-Of-Values Recursion

Theorem. (Page 50) Let A be a set, a ∈ A, and let A∗ be the set of finite
sequences of elements of A. If G : A∗ × N → A is a function, then there is a
unique function F : N → A satisfying

1 F (0) = a.
2 F (S(n)) = G(F |S(n), n). (Here F |S(n) is considered to be the sequence

(F (0), F (1), . . . , F (n)).)

Ideas of proof.

1 Show that is A is a set, then A∗ is a set.
2 Apply ordinary recursion to define the function E : N → A∗ where

E(n) = (F (0), F (1), . . . , F (n)).
3 Use E to define F .

Example.
Define the Fibonacci sequence by F0 = F1 = 1 and Fn+2 = Fn+1 + Fn.
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