SET THEORY

SUMMARY OF TOPICS FROM 10/4/23-12/13/23

- IV. Cardinality of sets
 - (a) Equipotence (|A| = |B|). $|A| \le |B|, |A| \le m$, etc.
 - (b) Cantor-Bernstein-Schröder Theorem.
 - (c) Finite sets and their properties.
 - (d) Countable sets.
- V. Ordinals and cardinals.
 - (a) Transitive sets.
 - (b) Definition of ordinal and cardinal number.
 - (c) Equipotence classes of infinite ordinals are bounded intervals.
- VI. Ordinals.
 - (a) Well-ordered sets. (Definition. Uniqueness properties from Section 6.1.3.)
 - (b) Ordinal numbers. (Definition. Examples. Successor vs. limit ordinals. Ordinals are well-ordered. Order type. Natural numbers are exactly the finite ordinals.)
 - (c) Axiom of Replacement.
 - (d) The class of ordinal numbers is not a set.
 - (e) Paradoxes of set theory: Russell's Paradox, Cantor's Paradox, Burali-Forti Paradox.
 - (f) Transfinite induction.
 - (g) Recursion Theorem.
 - (h) Ordinal arithmetic. (Definitions, properties, order-theoretic interpretations.)

VII. Cardinals.

- (a) Definition (= initial ordinal) and notation.
- (b) Hartogs number of a set.
- (c) Definitions for cardinal arithmetic.
- (d) $\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max(\aleph_{\alpha}, \aleph_{\beta}).$
- VIII. Axiom of Choice.
 - (a) ZF proves that A can be well-ordered iff $\mathcal{P}(A) \setminus \{\emptyset\}$ has a choice function.
 - (b) Within ZF, AC is equivalent to:
 - (i) Well-Ordering Theorem.
 - (ii) Zorn's Lemma.
 - (iii) Every surjective function has a right inverse.
 - (iv) Every set is equipotent with a unique initial ordinal.
 - (v) Any two sets have comparable cardinalities.
 - (vi) $|A \times A| = |A|$ for any infinite A.
 - (c) AC implies that
 - (i) every infinite set has a countably infinite subset.

- (ii) every Dedekind finite set is finite.
- (iii) a countable union of countable sets is countable.
- (iv) $2^{\aleph_0} \geq \aleph_1$.
- IX. Cardinal Arithmetic.
 - (a) Cofinality.
 - (b) Every infinite cardinal λ can be partitioned into λ -many cofinal λ -sequences.
 - (c) Kőnig's Theorem (+ the corollary $\kappa^{cf(\kappa)} > \kappa$).
 - (d) Regular and singular cardinals.
 - (e) Successor cardinals are regular. \aleph_{ω} and \beth_{ω} are singular.
 - (f) Within ZFC a cardinal κ may equal $|\mathbb{R}| = |\mathcal{P}(\omega)| = 2^{\aleph_0}$ iff $cf(\kappa)$ is uncountable.
 - (g) Cardinal exponentiation.
 - (h) Statements of the CH and the GCH.

General advice on preparing for a math test.

Be prepared to demonstrate understanding in the following ways.

- (i) Know the definitions of new concepts, and the meanings of the definitions.
- (ii) Know the statements and meanings of the major theorems.
- (iii) Know examples/counterexamples. (The purpose of an example is to illustrate the extent of a definition or theorem. The purpose of a counterexample is to indicate the limits of a definition or theorem.)
- (iv) Know how to perform the different kinds of calculations discussed in class.
- (v) Be prepared to prove elementary statements. (Understanding the proofs done in class is the best preparation for this.)
- (vi) Know how to correct mistakes made on old HW.

Sample Problems.

- (1) Suppose I have a set of pairwise disjoint circles in \mathbb{R}^2 , all of radius 1. Explain why my set is at most countable.
- (2) Show that the intersection of two transitive sets is transitive. (What about union?)
- (3) (a) Define "well-ordered set".
 - (b) Define "ordinal".
 - (c) Show that 0 is an ordinal and that the successor of an ordinal is an ordinal.
 - (d) Show that an element of an ordinal is an ordinal.
- (4) Show that any well-ordered set that is embeddable in $\langle \mathbb{R}; \langle \rangle$ is embeddable in $\langle \mathbb{Q}; \langle \rangle$. (Here 'embedding' means 'order-preserving embedding'.) Conclude that a well-ordered sub-poset of the real numbers must be countable.
- (5) Let P be the set of partial orderings of ω , let L be the set of all linear orderings of ω , and let W be the set of all well-orderings of ω . How are the cardinalities of the sets P, L, W related to the cardinalities of ω and $\mathcal{P}(\omega)$?
- (6) What are

- (a) Russell's Paradox?
- (b) Cantor's Paradox?
- (c) The Burali-Forti Paradox?
- (7) Explain why the class of all ordinals is not a set.
- (8) Is the set of proper subsets of ω , ordered by inclusion, an inductively ordered set? What conclusions, if any, can be drawn?
- (9) If the poset $\langle P; \leq \rangle$ is inductively ordered, and $X \subseteq P$, must the subposet $\langle X; \leq \rangle$ be inductively ordered?
- (10) Draw a picture of a poset that is not inductively ordered, but every element of the poset lies below some maximal element of the poset.
- (11) Let X be a topological space and suppose that $x \in X$. Let \mathcal{K} be the poset of open subsets of X that exclude x and let \mathcal{L} be the poset of closed subsets of X that exclude x (both ordered by inclusion). Is either \mathcal{K} or \mathcal{L} inductively ordered?
- (12) Explain why the Hartogs number of a set is a cardinal. What is the Hartogs number of \aleph_{α} ? What are the possibilities for the Hartogs number of an infinite, Dedekind finite set?
- (13) Explain why the cofinality of an ordinal is a cardinal.
- (14) Does it require the Axiom of Choice to prove that $|A \sqcup A| = |A|$ for infinite sets A?
- (15) Show that if κ is an infinite cardinal, then $2^{\kappa} = \kappa^{\kappa}$.
- (16) Show that $\operatorname{cf}(2^{\kappa}) > \kappa$.
- (17) Explain why $|\mathbb{R}| \neq \aleph_{\omega}$.