Set Theory Quiz 8

Name:_

You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show your work, and give adequate explanations.

1. Assume that $\mathbb{T} = \langle T; \langle \rangle$ is a totally-ordered set and $\mathbb{W} = \langle W; \langle \rangle$ is a well-ordered set. Show that if there is a morphism $f: \mathbb{T} \to \mathbb{W}$, then \mathbb{T} must also be a well-ordered set. ("morphism" means $\langle Preserving function.$)

We must show that if $S \subseteq T$ is nonempty, then S has a $<_T$ -least element in the order of \mathbb{T} . (To avoid confusion, I write $<_T$ for the order relation of \mathbb{T} and $<_W$ for the order relation of \mathbb{W} .)

Since $S \neq \emptyset$ we conclude that f(S) is nonempty. Since \mathbb{W} is a well-order and $f(S) \subseteq W$ is nonempty, there is a \langle_W -least element $f(s) \in f(S)$. We claim that s is a \langle_T -least element of S. If this were not so, then there would be some $s' \in S$ with $s' <_T s$. Then $f(s') <_W f(s)$ (since f is a morphism), contradicting the choice of s.