Set Theory Quiz 4

Name:____

You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show your work, and give adequate explanations.

1. Prove that addition is cancellative: that is, for all m, n, k in \mathbb{N} we have

m+k=n+k implies m=n.

(If you need some lemmas in the course of the proof, be sure to state them. You do not need to prove the lemmas now.)

Let $\varphi(x)$ be: " $\forall m \forall n ((m + x = n + x) \rightarrow (m = n))$ "

Basis of Induction: We prove that $\varphi(0)$ holds. Assume that the premise of the implication in $\varphi(0)$ is true, namely that m + 0 = n + 0 holds for some m, n.

m	= m + 0	(IC, +)
	= n + 0	Assumption
	= n	(IC, +)

Inductive Step: Assume that $\varphi(k)$ holds and that the premise m + S(k) = n + S(k) of the implication in $\varphi(S(k))$ holds for some m, n.

m + S(k) = n + S(k)	Premise of $\varphi(S(k))$
S(m+k) = S(n+k)	(RR, +)
m+k = n+k	Successor is injective
m = n	Inductive Hypothesis

Hence $\varphi(S(k))$ holds.