Set Theory
 Quiz 11

Name:

You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be complete, legible and correct. Show your work, and give adequate explanations.

1. Explain why $\operatorname{rank}(\omega)=\omega$.

The rank of a set x is the least ordinal α such that $x \subseteq V_{\alpha}$ (or, equivalently, $\left.x \in V_{\alpha+1}\right)$.

We remarked in class that $\operatorname{rank}(\alpha)=\alpha$ for any ordinal α, so $\operatorname{rank}(\omega)=\omega$.
2. Let $<$ be the order relation on ω. What is $\operatorname{rank}(<)$? $\operatorname{rank}(<)=\omega$.

Reasoning: The rank of $<$ is the least ordinal α such that V_{α} contains each of the elements of the relation $<$. An element of $<$ has the form (m, n) with $m, n \in \omega$ and $m<n$. This is a set of the form $\{\{m\},\{m, n\}\}$ with $m<n$. Since $m \subseteq n \subseteq V_{n}$ we have $m, n \in V_{n+1}$, so $\{m\},\{m, n\} \in V_{n+2}$, so $\{\{m\},\{m, n\}\} \in V_{n+3} \subseteq V_{\omega}$. This shows that V_{ω} contains any pair of $<$. This is enough to show that $\operatorname{rank}(<)$ is at most ω. To show that $\operatorname{rank}(<)$ cannot be strictly smaller than ω, note that $<$ cannot be a subset of V_{k} for finite k, since $<$ is an infinite set and V_{k} is a finite set.

