Set Theory Quiz 11

Name:_

You have 10 minutes to complete this quiz. If you have a question raise your hand and remain seated. In order to receive full credit your answer must be **complete**, **legible** and **correct**. Show your work, and give adequate explanations.

1. Explain why rank(ω) = ω .

The rank of a set x is the least ordinal α such that $x \subseteq V_{\alpha}$ (or, equivalently, $x \in V_{\alpha+1}$).

We remarked in class that $rank(\alpha) = \alpha$ for any ordinal α , so $rank(\omega) = \omega$.

2. Let < be the order relation on ω . What is rank(<)? rank(<) = ω .

Reasoning: The rank of < is the least ordinal α such that V_{α} contains each of the elements of the relation <. An element of < has the form (m, n) with $m, n \in \omega$ and m < n. This is a set of the form $\{\{m\}, \{m, n\}\}$ with m < n. Since $m \subseteq n \subseteq V_n$ we have $m, n \in V_{n+1}$, so $\{m\}, \{m, n\} \in V_{n+2}$, so $\{\{m\}, \{m, n\}\} \in V_{n+3} \subseteq V_{\omega}$. This shows that V_{ω} contains any pair of <. This is enough to show that rank(<) is at most ω . To show that rank(<) cannot be strictly smaller than ω , note that < cannot be a subset of V_k for finite k, since < is an infinite set and V_k is a finite set.