Set Theory Solution Key
Assignment 7 November 3

(1) Working in ZF, show that an infinite well-orderable set is Dedekind infinite. Con-
clude that an amorphous set is not well-orderable. (Interpret “well-orderable” to mean
“equipotent with an ordinal”.)

Assume that the bijection f: o — X establishes that X is equipotent with the ordinal «.
Since X is infinite, a must be infinite. The ordinals are totally ordered by €, so o must be
e-comparable with w. We do not have a € w, since « is infinite, so we must have w = « or
w € a. In either case, w C . The inclusion map ¢: w — « composed with f is an injective
function fo¢: w — X, establishing that |w| < |X], so X is Dedekind infinite.

For the last line of the problem, an amorphous set A is infinite and Dedekind finite, so
there can be no bijection f: a — A for any ordinal «.

(2) Do Exercise 6.1.3. (There exist 2% well-orderings of the set of all natural numbers.)

We have already shown that there exist 2%°-many distinct bijections from w to w. Each
such bijection 7: w — w may be used to define a binary relation <, on w:

m <, n<< 1 (m)€rx H(n).
With this definition, the bijection 7: w — w becomes an order-isomorphism
T (w; €) = (w; <x).

Since (w; <) is order-isomorphic to (w;€), (w; <.) is a well-ordered set, so <, is a well-
ordering of w.

I claim that distinct bijections 7, 7" yield distinct order relations <,, <, on w. Assume
instead that © # 7/, but <,=<,. Then 7 and 7’ must be distinct isomorphisms from the
well-ordered set (w; €) to the well-ordered set to (w; <,) = (w; <4). This contradicts the
fact that isomorphisms between well-ordered sets are unique when they exist.

The set

{<+€ P(w x w) | ™ a permutation of w}

contains 2%-many distinct well-orderings of w. There cannot be more, since there are only
2%_many binary relations on w. (The total number of binary relations is |P(w x w)| =

[Pw)] = [29] = 2%.)

(3) Do Exercise 6.2.8. (If X is a nonempty set of ordinals, then (| X is an ordinal. More-
over, [ X is the least element of X.)

The arguments for this were presented in class duing the October 30 and November 1
lectures.

On October 30, in Lemma 1, Part 4, we showed that the intersection of a class of ordinals
is an ordinal. The idea was to show that if each element of X is a transitive set of transitive
sets, then () X is also a transitive set of transitive sets.

On November 1, when showing that ON is well-ordered as a class, we showed that if X
is a nonempty subset of ordinals, then the ordinal (] X is the least element X. The idea was
this: we know that (| X C X; for every X; € X. Hence either (i) (X C X for every X; € X
or (i) X = X for some X; € X and (X C X for every X; € X,j # i. Using Lemma 2
from October 30, Case (i) leads to (| X € X; for every X; € X, hence to [ X € [ X, which
contradicts the Axiom of Foundation. Case (ii) leads to the conclusion that (X = X is
the e-least element of X, as desired.



