(1) Working in ZF, show that an infinite well-orderable set is Dedekind infinite. Conclude that an amorphous set is not well-orderable. (Interpret "well-orderable" to mean "equipotent with an ordinal".)

Assume that the bijection $f: \alpha \rightarrow X$ establishes that X is equipotent with the ordinal α. Since X is infinite, α must be infinite. The ordinals are totally ordered by \in, so α must be \in-comparable with ω. We do not have $\alpha \in \omega$, since α is infinite, so we must have $\omega=\alpha$ or $\omega \in \alpha$. In either case, $\omega \subseteq \alpha$. The inclusion map $\iota: \omega \rightarrow \alpha$ composed with f is an injective function $f \circ \iota: \omega \rightarrow X$, establishing that $|\omega| \leq|X|$, so X is Dedekind infinite.

For the last line of the problem, an amorphous set A is infinite and Dedekind finite, so there can be no bijection $f: \alpha \rightarrow A$ for any ordinal α.
(2) Do Exercise 6.1.3. (There exist $2^{\aleph_{0}}$ well-orderings of the set of all natural numbers.)

We have already shown that there exist $2^{\aleph_{0}}$-many distinct bijections from ω to ω. Each such bijection $\pi: \omega \rightarrow \omega$ may be used to define a binary relation $<_{\pi}$ on ω :

$$
m<_{\pi} n \Leftrightarrow \pi^{-1}(m) \in \pi^{-1}(n) .
$$

With this definition, the bijection $\pi: \omega \rightarrow \omega$ becomes an order-isomorphism

$$
\pi:\langle\omega ; \in\rangle \rightarrow\left\langle\omega ;<_{\pi}\right\rangle
$$

Since $\left\langle\omega ;<_{\pi}\right\rangle$ is order-isomorphic to $\langle\omega ; \in\rangle,\left\langle\omega ;<_{\pi}\right\rangle$ is a well-ordered set, so $<_{\pi}$ is a wellordering of ω.

I claim that distinct bijections π, π^{\prime} yield distinct order relations $<_{\pi},<_{\pi^{\prime}}$ on ω. Assume instead that $\pi \neq \pi^{\prime}$, but $<_{\pi}=<_{\pi^{\prime}}$. Then π and π^{\prime} must be distinct isomorphisms from the well-ordered set $\langle\omega ; \in\rangle$ to the well-ordered set to $\left\langle\omega ;<_{\pi}\right\rangle=\left\langle\omega ;\left\langle_{\pi^{\prime}}\right\rangle\right.$. This contradicts the fact that isomorphisms between well-ordered sets are unique when they exist.

The set

$$
\left\{<_{\pi} \in \mathcal{P}(\omega \times \omega) \mid \pi \text { a permutation of } \omega\right\}
$$

contains $2^{\aleph_{0}}$-many distinct well-orderings of ω. There cannot be more, since there are only $2^{\aleph_{0}}$-many binary relations on ω. (The total number of binary relations is $|\mathcal{P}(\omega \times \omega)|=$ $|\mathcal{P}(\omega)|=\left|2^{\omega}\right|=2^{\aleph_{0}}$.)
(3) Do Exercise 6.2.8. (If X is a nonempty set of ordinals, then $\bigcap X$ is an ordinal. Moreover, $\bigcap X$ is the least element of X.)

The arguments for this were presented in class duing the October 30 and November 1 lectures.

On October 30, in Lemma 1, Part 4, we showed that the intersection of a class of ordinals is an ordinal. The idea was to show that if each element of X is a transitive set of transitive sets, then $\bigcap X$ is also a transitive set of transitive sets.

On November 1, when showing that ON is well-ordered as a class, we showed that if X is a nonempty subset of ordinals, then the ordinal $\bigcap X$ is the least element X. The idea was this: we know that $\bigcap X \subseteq X_{i}$ for every $X_{i} \in X$. Hence either (i) $\bigcap X \subsetneq X_{i}$ for every $X_{i} \in X$ or (ii) $\bigcap X=X_{i}$ for some $X_{i} \in X$ and $\bigcap X \subsetneq X_{j}$ for every $X_{j} \in X, j \neq i$. Using Lemma 2 from October 30, Case (i) leads to $\bigcap X \in X_{i}$ for every $X_{i} \in X$, hence to $\bigcap X \in \bigcap X$, which contradicts the Axiom of Foundation. Case (ii) leads to the conclusion that $\bigcap X=X_{i}$ is the \in-least element of X, as desired.

