In the solutions below I will assume the truth of all the Laws of Addition from the handout arithmetic.pdf. Following a common convention, I may denote the product of $m, n \in \mathbb{N}$ by either $m n$ or by $m \cdot n$. Also, I will use the following abbreviations:

- $\mathrm{IC}=$ Initial Condition
- $\mathrm{RR}=$ Recurrence Relation
- $\mathrm{IH}=$ Inductive Hypothesis
(1) Prove that $(m+n) \cdot k=(m \cdot k)+(n \cdot k)$ for all $m, n, k \in \mathbb{N}$.

We are proving the Right Distributive Law.
This is a proof by induction on k.
(Base Case: $k=0$)

$$
\begin{aligned}
(m+n) 0 & =0 & & (\mathrm{IC}, \cdot) \\
& =0+0 & & (\mathrm{IC},+) \\
& =m 0+n 0 & & \text { (IC, } \cdot)
\end{aligned}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{aligned}
(m+n) \cdot S(k) & =(m+n) k+(m+n) & & (\mathrm{RR}, \cdot) \\
& =(m k+n k)+(m+n) & & (\mathrm{IH}) \\
& =m k+(n k+(m+n)) & & \text { (Associative Law, +) } \\
& =m k+((n k+m)+n)) & & \text { (Associative Law, +) } \\
& =m k+((m+n k)+n)) & & \text { (Commutative Law, }+ \text {) } \\
& =m k+(m+(n k+n)) & & \text { (Associative Law, }+ \text {) } \\
& =(m k+m)+(n k+n) & & \text { (Associative Law, }+ \text {) } \\
& =(m \cdot S(k))+(n \cdot S(k)) & & \text { (RR, } \cdot)
\end{aligned}
$$

(2) Prove that $m \cdot n=n \cdot m$ for all $m, n \in \mathbb{N}$.

Lemma 1. $0 k=0$.
Proof. This is a proof by induction on k.
(Base Case: $k=0$)

$$
00=0
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
0 \cdot S(k) & =0 k+0 \\
& =0+0 \tag{IH}\\
& =0
\end{align*}
$$

(IC, +)

Lemma 2. $1 m=m$.
Proof. This is a proof by induction on m.
(Base Case: $m=0$)

$$
10=0 \quad(\mathrm{IC}, \cdot)
$$

(Inductive Step: Assume true for m, prove true for $S(m)$)

$$
\begin{align*}
1 \cdot S(m) & =(1 m)+1 & & (\mathrm{RR}, \cdot) \\
& =m+1 & & (\mathrm{IH}) \tag{IH}\\
& =S(m) & & \text { (Law (a) of Addition) }
\end{align*}
$$

Solution to the Problem.

Proof. We prove that $m n=n m$ by induction on n.
(Base Case: $n=0$)

$$
\begin{aligned}
m 0 & =0 & & (\mathrm{IC}, \cdot) \\
& =0 m & & (\text { Lemma } 1)
\end{aligned}
$$

(Inductive Step: Assume true for n, prove true for $S(n)$)

$$
\begin{align*}
m \cdot S(n) & =(m n)+m & & (\mathrm{RR}, \cdot) \\
& =(n m)+m & & (\mathrm{IH}) \tag{IH}\\
& =(n m)+(1 m) & & (\text { Lemma 2) } \tag{Lemma2}\\
& =(n+1) \cdot m & & \text { (Exercise 1) } \\
& =S(n) \cdot m & & \text { (Law (a) of Addition) }
\end{align*}
$$

(3) Prove that $m^{n+k}=m^{n} \cdot m^{k}$. (You may need to prove some lemmas first.)

Lemma 1. (Law (d) of Multiplication) $m 1=m$.
Proof.

$$
\begin{aligned}
m \cdot 1 & =m \cdot S(0) & & \text { (Definition of 1) } \\
& =(m \cdot 0)+m & & (\mathrm{RR}, \cdot) \\
& =0+m & & (\text { IC }, \cdot) \\
& =m & & \text { (Law (c) of Addition) }
\end{aligned}
$$

Lemma 2. (Left Distributive Law) $m(n+k)=(m n)+(m k)$.
Proof. We prove this by induction on k.
(Base Case: $k=0$)

$$
\begin{aligned}
m(n+0) & =m n & & (\mathrm{IC},+) \\
& =m n+0 & & (\mathrm{IC},+) \\
& =m n+m 0 & & (\mathrm{IC}, \cdot)
\end{aligned}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
m \cdot(n+S(k)) & =m \cdot S(n+k) & & (\mathrm{RR},+) \\
& =m(n+k)+m & & (\mathrm{RR}, \cdot) \\
& =(m n+m k)+m & & (\mathrm{IH}) \tag{IH}\\
& =m n+(m k+m) & & (\mathrm{Associative} \text { Law, +) } \\
& =m n+m S(k) & & (\mathrm{RR}, \cdot)
\end{align*}
$$

Lemma 3. (Associative Law of Multiplication) $m(n k)=(m n) k$.
Proof. We prove this by induction on k.
(Base Case: $k=0$)

$$
\begin{align*}
m \cdot(n \cdot 0) & =m \cdot 0 & & (\mathrm{IC}, \cdot) \\
& =0 & & (\mathrm{IC}, \cdot) \\
& =(m \cdot n) \cdot 0 & & (\mathrm{IC}, \cdot)
\end{align*}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
m \cdot(n \cdot S(k)) & =m(n k+n) & & (\mathrm{RR}, \cdot) \\
& =m(n k)+m n & & (\text { Left Distributive Law, Lemma 2) } \\
& =(m n) k+m n & & \text { (IH) } \tag{IH}\\
& =(m n) k+(m n) \cdot 1 & & \text { (Law (d) of Multiplication, Lemma 1) } \\
& =(m n)(k+1) & & \text { (Left Distributive Law, Lemma 2) } \\
& =(m n) S(k) & & \text { (Law (a) of Addition) }
\end{align*}
$$

Solution to the Problem.

Proof. We prove that $m^{n+k}=m^{n} \cdot m^{k}$ by induction on k.
(Base Case: $k=0$)

$$
\begin{aligned}
m^{n+0} & =m^{n} & & (\mathrm{IC},+) \\
& =m^{n} \cdot 1 & & (\text { Law (d) of Multiplication, Lemma 1) } \\
& =m^{n} \cdot m^{0} & & (\mathrm{IC}, \operatorname{Exp})
\end{aligned}
$$

(Inductive Step: Assume true for k, prove true for $S(k)$)

$$
\begin{align*}
m^{n+S(k)} & =m^{S(n+k)} & & (\mathrm{RR},+) \\
& =m^{n+k} \cdot m & & (\mathrm{RR}, \operatorname{Exp}) \\
& =\left(m^{n} \cdot m^{k}\right) \cdot m & & (\mathrm{IH}) \\
& =m^{n} \cdot\left(m^{k} \cdot m\right) & & \text { (Associative Law, } \cdot ; \text { Lemma 3) } \tag{IH}\\
& =m^{n} \cdot m^{S(k)} & & (\mathrm{RR}, \operatorname{Exp})
\end{align*}
$$

