(1) Do Exercise 2.3.9 (a). (Show that the set B^{A} exists.) (If you use the hint, show that it is true. Definition 2.3.13 is relevant to this problem.)
B^{A} is meant to denote the set of all functions $f: A \rightarrow B$. Each such function f is a binary relation from A to B, hence is a subset of $A \times B$, hence is an element of $\mathcal{P}(A \times B)$. This shows that $B^{A} \subseteq \mathcal{P}(A \times B)$.

To show that B^{A} is a set we explain how to construct it. We could define it using the Axiom of Separation by

$$
B^{A}=\left\{f \in \mathcal{P}(A \times B) \mid \varphi_{\text {function }}(f, A, B)\right\}
$$

if we had a formula $\varphi_{\text {function }}(x, y, z)$ expressing the property that x is a function from y to z. This formula needs to say that $x \subseteq y \times z$ and that x satisfies the function rule: for every $u \in y$ there is a unique $v \in z$ such that $(u, v) \in x$.

Assuming that we have already constructed formulas for the less-complex concepts

1. $\varphi_{\text {binary relation }}(x, y, z): " x \subseteq y \times z "$
2. $\varphi_{\text {pair }}(p, u, v): " p=(u, v) "$
we could express $\varphi_{\text {function }}(x, y, z)$ as
$\varphi_{\text {binary relation }}(x, y, z) \wedge(\forall u)\left((u \in y) \rightarrow(\exists!v)\left((v \in z) \wedge\left((\exists p)\left(\varphi_{\text {pair }}(p, u, v) \wedge(p \in x)\right)\right)\right)\right)$.
Here \exists ! means "there exists a unique". We write $(\exists!s) Q(s)$ to abbreviate

$$
(\exists t) Q(t) \wedge(\forall r)(\forall s)((Q(r) \wedge Q(s)) \rightarrow(r=s))
$$

(2) Do Exercise 3.2.6. (Prove that each natural number is the set of all smaller natural numbers, i.e., $n=\{m \in \mathbb{N} \mid m<n\}$.)

Let $\varphi(n)$ be the statement that $n \subseteq \mathbb{N}$.

1. (Basis of Induction) $\varphi(0)$ holds since $0=\emptyset$ is a subset of every set.
2. (Inductive Step) Assume that $\varphi(k)$ holds for some $k \in \mathbb{N}$, i.e., $k \subseteq \mathbb{N}$. Since $k \in \mathbb{N}$, we have $\{k\} \subseteq \mathbb{N}$. Since both k and $\{k\}$ are subsets of \mathbb{N}, so is $k \cup\{k\}=S(k)$. This shows that $k \subseteq \mathbb{N}$ implies that $S(k) \subseteq \mathbb{N}$.

Now we argue that any natural number n is the set of its <-predecessors (in symbols, this is the assertion $n=\{m \in \mathbb{N} \mid m<n\}$). We use that we have defined the order on \mathbb{N} so that for $m, n \in \mathbb{N}$ we have $m<n$ iff $m \in n$. (Thus, $<$ on \mathbb{N} equals the restriction to \mathbb{N} of the relation \in.)
(a) If $x \in n$, then $x \in \mathbb{N}$ by the inductive argument above, hence $x<n$ by the definition of $<$ on \mathbb{N}.
(b) If $x<n$, then according to the definition of $<$ we have $x \in n$.

Items (a) and (b) + the Axiom of Extensionality prove that $n=\{m \in \mathbb{N} \mid m<n\}$.
(3) Do Exercise 3.2.8. (Prove that there is no function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $n \in \mathbb{N}$, $f(n)>f(n+1)$.)

One may use the Axiom of Foundation to prove the more general fact that, for any set A, there is no function $f: \mathbb{N} \rightarrow A$ such that for all $n \in \mathbb{N}, f(n+1) \in f(n)$. That argument goes as follows: if f were such a function, then its image $\operatorname{im}(f)$ is a nonempty set that has no \in-minimal element.

But we can prove the statement of Exercise 3.2 .8 without using the Axiom of Foundation, since the image of f consists of natural numbers. We just observe that $\operatorname{im}(f)$ is a nonempty subset of \mathbb{N} that has no <-least element, contradicting the fact that \mathbb{N} is well-ordered by $<$.

