(1) (Exercise 1.3.1.) Show that the set of all x such that $x \in A$ and $x \notin B$ exists.

The set of the problem, which is typically denoted by $A-B$ or $A \backslash B$, may be constructed by the Axiom of Separation as follows:

$$
A-B=\{x \in A \mid x \notin B\}
$$

(2) (Exercise 1.3.6.) Show that $\mathcal{P}(X) \subseteq X$ is false for any X. In particular, $\mathcal{P}(X) \neq X$ for any X. This proves again that a "set of all sets" does not exist. [Hint: Let $Y=\{u \in X \mid u \notin u\} ; Y \in \mathcal{P}(X)$ but $Y \notin X$.]

Assume that $\mathcal{P}(X) \subseteq X$ and let $Y=\{u \in X \mid u \notin u\}$. We must have $Y \subseteq X$, so $Y \in \mathcal{P}(X)$, so we should have $Y \in X$. Let us show that the assumption that $Y \in X$ leads to a Russell-type paradox.

Case 1: $(Y \in X$ and $Y \notin Y)$ Then $u:=Y$ satisfies the property that defines membership in Y, so $Y=u \in Y$. The properties $Y \notin Y$ and $Y \in Y$ contradict one another.

Case 2: $(Y \in X$ and $Y \in Y)$ Then $u:=Y$ fails the property that defines membership in Y, so $Y=u \notin Y$. The properties $Y \in Y$ and $Y \notin Y$ contradict one another.
(3) (a) (Exercise 2.2.8(a)) $A \times B=\emptyset$ if and only if $A=\emptyset$ or $B=\emptyset$.
$[\Rightarrow]$: Arguing the contrapositive, assume that $A \neq \emptyset \neq B$. There must exist $a \in A$ and $b \in B$, in which case $(a, b) \in A \times B$, so $A \times B \neq \emptyset$.
$[\Leftarrow]$: Again, arguing the contrapositive, assume that $A \times B \neq \emptyset$. There must exist $(a, b) \in A \times B$, in which case $a \in A$ and $b \in B$, so $A \neq \emptyset$ and $B \neq \emptyset$.
(3) (b) (First part of Exercise 2.2.8(b)) $\left(A_{1} \cup A_{2}\right) \times B=\left(A_{1} \times B\right) \cup\left(A_{2} \times B\right)$.

Choose an element (a, b) from the left hand side: $(a, b) \in\left(A_{1} \cup A_{2}\right) \times B$. By the definitions of \times and \cup, we have $b \in B$ and either $a \in A_{1}$ (Case 1) or $a \in A_{2}$ (Case 2). If we are in Case 1, then $(a, b) \in A_{1} \times B$; if we are in Case 1, then $(a, b) \in A_{2} \times B$. In either case we have $(a, b) \in\left(A_{1} \times B\right) \cup\left(A_{2} \times B\right)$, according to the definition of \cup.

Now choose an element (a, b) from the right hand side: $(a, b) \in\left(A_{1} \times B\right) \cup\left(A_{2} \times B\right)$. By the definition of \cup, we have $(a, b) \in A_{1} \times B$ (Case 1) or $(a, b) \in A_{2} \times B$ (Case 2). This yields $b \in B$ in either case and either $a \in A_{1}$ (in Case 1) or $a \in A_{2}$ (in Case 2). Therefore, in either case we have $a \in A_{1} \cup A_{2}$ and $b \in B$, so $(a, b) \in\left(A_{1} \cup A_{2}\right) \times B$.

