1. Using Zorn's Lemma, show that every connected graph has a spanning tree.

Let $G=\langle V ; E\rangle$ be a graph with vertex-set V and edge-set E. Let's agree to call a subgraph $H=\left\langle V_{H} ; E_{H}\right\rangle$ with $V_{H}=V$ and $E_{H} \subseteq E$ a 'subforest' if it is acyclic, and a 'spanning tree' if it is acyclic and connected. That is, a subforest or spanning tree will have the same vertices as G and will have a subset of the edges of G, both are required to be acyclic, but a spanning tree is also required to be connected.

Define a poset $\langle P ;<\rangle$ whose elements are edge-sets E_{H} where H is a subforest of G, and the set P is ordered by $E_{H}<E_{K}$ iff $E_{H} \subsetneq E_{K}$ (the proper inclusion order).

Claim. $\langle P ;\langle \rangle$ is inductively ordered.
Proof. We argue that if $C \subseteq P$ is a chain, then $\bigcup C \in P$. Since each element of C is the edge-set of a subforest, $\bigcup C$ is a set of edges. To see that $\bigcup C \in P$, we must argue that $\bigcup C$ is acyclic. If not, then there is a cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ with $\left\{v_{i}, v_{i+1}\right\} \in \bigcup C$ for all i. (I will write undirected edges as doubletons.) For each $i=1, \ldots, n$, there exists $E_{i} \in C$ with $\left(v_{i}, v_{i+1}\right) \in E_{i}$. Since C is a chain and is ordered by inclusion, there is an $i_{0} \in\{1,2, \ldots, n\}$ such that $E_{i_{0}}$ contains E_{i} for all $i=1, \ldots, n$, and that means $E_{i_{0}}$ contains the cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$. This is impossible, since $E_{i_{0}} \in C$ and all sets in C are edge-sets of subforests. The conclusion is that $\bigcup C$ is acyclic, hence $\bigcup C \in P$, hence $\bigcup C$ is an upper bound to C in P.

By the Claim, together with Zorn's Lemma, there must exist a maximal element E_{H} of P. The subgraph $H=\left\langle V ; E_{H}\right\rangle$ is a subforest of G whose edge-set is maximal in the ordering of P. This maximality implies that adding any single new edge to E_{H} will result in a cycle. We need to argue that $H=\left\langle V ; E_{H}\right\rangle$ is a spanning tree for G. For this, we need to show that H is connected.

To complete the proof, assume that H is not connected. This means that there exist $u, w \in V$ which are not connected by any path in H. Since G is connected, the vertices u and w are connected by a path in G, say a path of length $m: u=u_{1}, \ldots, u_{m}=w$. Among all such choices of u and w satisfying these conditions, we may assume that our choices have been made to minimize m. Necessarily $m=1$, as I now explain. If $u=u_{1}, \ldots, u_{m}=w$ with $m>1$ and m chosen minimally, then u_{2} is connected to both u and w in G, but cannot be connected to both u and w in H. This means that there are G-paths $u--u_{2}$ and $u_{2}--w$ that are both of length $<m$ and they are not both H-paths, so one of these paths contradicts the minimality of m.

So far we have learned that H has vertices u and w that are adjacent ($=$ connected by a path of length $m=1$) in G but not connected by any path in H. In particular, this means that $\{u, w\} \notin E_{H}$. Let $E_{H^{\prime}}=E_{H} \cup\{\{u, w\}\}$. The maximality of E_{H} implies that $H^{\prime}:=\left\langle V ; E_{H^{\prime}}\right\rangle$ has a cycle. Since $H=\left\langle V ; E_{H}\right\rangle$ did not have a cycle, the cycle in H^{\prime} must contain the new edge $\{u, w\}$. Assume that the cycle is $u, w=w_{1}, \ldots, w_{k}=u$, where we may assume that the vertices are distinct except for the first and last. But now $w=w_{1}, \ldots, w_{k}=u$ is a path in H that connects w to u, and we chose these two elements so that there was no such path. This contradicts our assumption that H is not connected. The proof is complete.
2. (Exercise 9.1.10.) Prove that $\kappa \cdot \kappa \cdots(\lambda$ times $)=\kappa^{\lambda}$.

The lefthand side of

$$
\kappa \cdot \kappa \cdots \stackrel{?}{=} \kappa^{\lambda}
$$

is the unique cardinal equipotent with the set $A=\prod_{\alpha<\lambda} \kappa$, while the righthand side is the unique cardinal that is equipotent with the set $B=\{f: \lambda \rightarrow \kappa \mid f$ is a function $\}$. To prove the cardinals are equal, it suffices to produce a bijection $F: B \rightarrow A$. One such bijection is

$$
B \rightarrow A: f \mapsto(f(0), f(1), f(2), \ldots)
$$

If you prefer to give a bijection in the other direction, i.e. $G: A \rightarrow B$, then you might choose

$$
A \mapsto B: t \mapsto \widehat{t}, \quad \text { where } \quad \widehat{t}(\alpha)=t_{\alpha} .
$$

3. Show that if α is any ordinal, then there is an ordinal β of countable cofinality satisfying $\beta>\alpha$.

If α is an ordinal and $\beta:=\alpha+\omega$, then $\beta>\alpha$ and β has countable cofinality (since $S=\{\alpha+n \mid n \in \omega\}$ is a countable cofinal subset of β).

