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1. Using Zorn’s Lemma, show that every connected graph has a spanning tree.

Let G = ⟨V ;E⟩ be a graph with vertex-set V and edge-set E. Let’s agree to call a
subgraph H = ⟨VH ;EH⟩ with VH = V and EH ⊆ E a ‘subforest’ if it is acyclic, and a
‘spanning tree’ if it is acyclic and connected. That is, a subforest or spanning tree will have
the same vertices as G and will have a subset of the edges of G, both are required to be
acyclic, but a spanning tree is also required to be connected.

Define a poset ⟨P ;<⟩ whose elements are edge-sets EH where H is a subforest of G, and
the set P is ordered by EH < EK iff EH ⊊ EK (the proper inclusion order).

Claim. ⟨P ;<⟩ is inductively ordered.

Proof. We argue that if C ⊆ P is a chain, then
⋃
C ∈ P . Since each element of C is the

edge-set of a subforest,
⋃

C is a set of edges. To see that
⋃

C ∈ P , we must argue that⋃
C is acyclic. If not, then there is a cycle v1, v2, . . . , vn, vn+1 = v1 with {vi, vi+1} ∈

⋃
C

for all i. (I will write undirected edges as doubletons.) For each i = 1, . . . , n, there exists
Ei ∈ C with (vi, vi+1) ∈ Ei. Since C is a chain and is ordered by inclusion, there is an
i0 ∈ {1, 2, . . . , n} such that Ei0 contains Ei for all i = 1, . . . , n, and that means Ei0 contains
the cycle v1, v2, . . . , vn, vn+1 = v1. This is impossible, since Ei0 ∈ C and all sets in C are
edge-sets of subforests. The conclusion is that

⋃
C is acyclic, hence

⋃
C ∈ P , hence

⋃
C is

an upper bound to C in P . 2

By the Claim, together with Zorn’s Lemma, there must exist a maximal element EH of
P . The subgraph H = ⟨V ;EH⟩ is a subforest of G whose edge-set is maximal in the ordering
of P . This maximality implies that adding any single new edge to EH will result in a cycle.
We need to argue that H = ⟨V ;EH⟩ is a spanning tree for G. For this, we need to show that
H is connected.

To complete the proof, assume that H is not connected. This means that there exist
u,w ∈ V which are not connected by any path in H. Since G is connected, the vertices u
and w are connected by a path in G, say a path of length m: u = u1, . . . , um = w. Among
all such choices of u and w satisfying these conditions, we may assume that our choices have
been made to minimize m. Necessarily m = 1, as I now explain. If u = u1, . . . , um = w with
m > 1 and m chosen minimally, then u2 is connected to both u and w in G, but cannot be
connected to both u and w in H. This means that there are G-paths u−−u2 and u2 −−w
that are both of length < m and they are not both H-paths, so one of these paths contradicts
the minimality of m.

So far we have learned that H has vertices u and w that are adjacent (= connected
by a path of length m = 1) in G but not connected by any path in H. In particular,
this means that {u,w} /∈ EH . Let EH′ = EH ∪ {{u,w}}. The maximality of EH implies
that H ′ := ⟨V ;EH′⟩ has a cycle. Since H = ⟨V ;EH⟩ did not have a cycle, the cycle in
H ′ must contain the new edge {u,w}. Assume that the cycle is u,w = w1, . . . , wk = u,
where we may assume that the vertices are distinct except for the first and last. But now
w = w1, . . . , wk = u is a path in H that connects w to u, and we chose these two elements
so that there was no such path. This contradicts our assumption that H is not connected.
The proof is complete.
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2. (Exercise 9.1.10.) Prove that κ · κ · · · (λ times) = κλ.

The lefthand side of
κ · κ · · · ?

= κλ

is the unique cardinal equipotent with the set A =
∏

α<λ κ, while the righthand side is the
unique cardinal that is equipotent with the set B = {f : λ → κ | f is a function}. To prove
the cardinals are equal, it suffices to produce a bijection F : B → A. One such bijection is

B → A : f 7→ (f(0), f(1), f(2), . . .).

If you prefer to give a bijection in the other direction, i.e. G : A → B, then you might choose

A 7→ B : t 7→ t̂, where t̂(α) = tα.

3. Show that if α is any ordinal, then there is an ordinal β of countable cofinality satisfying
β > α.

If α is an ordinal and β := α + ω, then β > α and β has countable cofinality (since
S = {α + n | n ∈ ω} is a countable cofinal subset of β).
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