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N

The set N of natural numbers is the intersection of all inductive sets.
We will see that N is totally ordered by the ∈-relation:

m < n ⇔ m ∈ n.

We will also see that N may be equipped with algebraic structure:
Addition

m + 0 := m (IC)
m + S(n) := S(m + n) (RR)

Multiplication

m · 0 := 0 (IC)
m · S(n) := (m · n) + m (RR)

Exponentiation

m0 := 1 (IC)
mS(n) := (mn) · m (RR)
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Induction and Recursion

To develop the structure ⟨N; 0, S(x), x < y, x + y, x · y, xy⟩, we need the tools of
Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let φ(x) be a (first-order ZFC-) formula. If

1 φ(0) is true, and
2 φ(k) implies φ(S(k)) is true for all k ∈ N , then

φ(n) is true for all n ∈ N.

Proof. By the Axiom of Separation, I = {x ∈ N |φ(x)} is subset of N. If the
two conditions of the theorem hold, then I is an inductive subset of N. Hence
I = N. (Since I ⊆ N and N ⊆ I .) 2
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Example

Suppose we observe that

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and we conjecture that the sum of the first n odd numbers is n2. Suppose we
consider

φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2

to be a formula that expresses this conjecture. Then we could establish the
conjecture (using the “Principle of Induction”) by proving:

1 (Basis of Induction) φ(0) is true. (Check!)
2 (Inductive Step) φ(k) implies φ(S(k)) is true for all k ∈ N. (Check!)
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Example (continuation)

On the previous slide we wrote: “Suppose we consider
φ(n) : 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2 to be a formula that expresses
this conjecture.”
But this is not a formula of the type we used in our proof of the Principle of
Mathematical Induction. We need a formula φ(x) that can be expressed in the
“first-order” language of ZFC. The length of such a formula is fixed, while the
length of the statement 1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2 grows as n
grows. We can get around this by defining, within ZFC, the function

F (n) = 1 + 2 + · · · + (2n + 1).

If we do this, then the formula φ(n) : F (n) = n2 will be a formula which
expresses the conjecture we wanted to prove, and to which the Principle of
Induction can be applied.
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Recursion

Recursion Theorem. For any set A, any a ∈ A, and any function
G : A × N → A, there is a unique function F : N → A satisfying

1 F (0) = a, and
2 F (S(n)) = G(F (n), n)

for all n ∈ N.

Example. Let A = N, a = 1 ∈ A, and G(x, y) = x + (2y + 3). Then

1 (Initial Condition, IC) F (0) = 1, and
2 (Recurrence relation, RR) F (S(n)) = F (n) + (2n + 3).

Hence, if F (n) = 1 + 3 + · · · + (2n + 1), then
F (n + 1) = F (n) + (2n + 3) = (1 + 3 + · · · + (2n + 1)) + (2n + 3), as
desired.
Now our conjecture 1 + 3 + · · · + (2n + 1) = n2 is expressible in a first-order
way, F (n) = n2, so the Principle of Induction may be applied to prove the
conjecture.
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2 F (S(n)) = G(F (n), n)

for all n ∈ N.

Example. Let A = N, a = 1 ∈ A, and G(x, y) = x + (2y + 3). Then
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Foreshadowing

It is probably too early to appreciate the power of the methods of

1 Definition by Recursion, and
2 Proof by Induction.

It may help to keep in mind these comments:

1 Definition by Recursion allows us to start with fragments of information
concerning the definition of a function with domain N and be guaranteed
the existence of a uniquely determined function consistent with those
fragments of information. We do not need to give a formula for the
function, nor do we need to describe all the pairs in the function.

2 The Principle of Induction allows us to give a finite-length argument to
derive conclusions in infinitely many cases.

3 Induction is well-suited to prove facts about recursively-defined objects.
(Often it is the only way to prove such facts.)
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