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G: A x N — A, there is a unique function F': N — A satisfying

QO F(0)=a,and

@ F(S(n)) = G(F(n),n)
forallm € N.
Example. Let A=N,a=1¢€ A, and G(z,y) = = + (2y + 3). Then

@ (Initial Condition, IC) F'(0) = 1, and

@ (Recurrence relation, RR) F'(S(n)) = F(n) + (2n + 3).
Hence, if F(n) =1+3+---4 (2n+ 1), then
Fin+1)=Fn)+(2n+3)=(14+3+---+2n+1))+ (2n+3),as
desired.
Now our conjecture 1 + 3 + - - - 4 (2n 4 1) = n? is expressible in a first-order

way, F'(n) = n?, so the Principle of Induction may be applied to prove the
conjecture.
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© Definition by Recursion allows us to start with fragments of information
concerning the definition of a function with domain N and be guaranteed
the existence of a uniquely determined function consistent with those
fragments of information. We do not need to give a formula for the
function, nor do we need to describe all the pairs in the function.

© The Principle of Induction allows us to give a finite-length argument to
derive conclusions in infinitely many cases.

© Induction is well-suited to prove facts about recursively-defined objects.
(Often it is the only way to prove such facts.)
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