The Natural Numbers

The set \mathbb{N} of natural numbers is the intersection of all inductive sets.

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n .
$$

We will also see that \mathbb{N} may be equipped with algebraic structure:

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

Multiplication

$$
\begin{array}{cl}
m \cdot 0 & :=0 \\
m \cdot S(n) & :=(m \cdot n)+m \tag{RR}
\end{array}
$$

The set \mathbb{N} of natural numbers is the intersection of all inductive sets. We will see that \mathbb{N} is totally ordered by the \in-relation:

$$
m<n \quad \Leftrightarrow \quad m \in n
$$

We will also see that \mathbb{N} may be equipped with algebraic structure: Addition

$$
\begin{array}{cl}
m+0 & :=m \\
m+S(n) & :=S(m+n) \tag{RR}
\end{array}
$$

Multiplication

$$
\begin{array}{cl}
m \cdot 0 & :=0 \\
m \cdot S(n) & :=(m \cdot n)+m \tag{RR}
\end{array}
$$

Exponentiation

$$
\begin{array}{cl}
m^{0} & :=1 \\
m^{S(n)} & :=\left(m^{n}\right) \cdot m \tag{RR}
\end{array}
$$

Induction and Recursion

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold,

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$.

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$. $($ Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$. $($ Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

Induction and Recursion

To develop the structure $\left\langle\mathbb{N} ; 0, S(x), x<y, x+y, x \cdot y, x^{y}\right\rangle$, we need the tools of Induction and Recursion.

Induction.

Theorem. (Principle of Induction)
Let $\varphi(x)$ be a (first-order ZFC-) formula. If
(1) $\varphi(0)$ is true, and
(2) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in N$, then
$\varphi(n)$ is true for all $n \in \mathbb{N}$.
Proof. By the Axiom of Separation, $I=\{x \in \mathbb{N} \mid \varphi(x)\}$ is subset of \mathbb{N}. If the two conditions of the theorem hold, then I is an inductive subset of \mathbb{N}. Hence $I=\mathbb{N}$. $($ Since $I \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq I$.)

Example

Example

Suppose we observe that

Example

Suppose we observe that
$1=1$

Example

Suppose we observe that

$$
\begin{array}{r}
1=1 \\
1+3=4
\end{array}
$$

Example

Suppose we observe that

$$
\begin{array}{r}
1=1 \\
1+3=4 \\
1+3+5=9
\end{array}
$$

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction")

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$.

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$. (Check!)

Example

Suppose we observe that

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16
\end{aligned}
$$

and we conjecture that the sum of the first n odd numbers is n^{2}. Suppose we consider

$$
\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}
$$

to be a formula that expresses this conjecture. Then we could establish the conjecture (using the "Principle of Induction") by proving:
(1) (Basis of Induction) $\varphi(0)$ is true. (Check!)
(2) (Inductive Step) $\varphi(k)$ implies $\varphi(S(k))$ is true for all $k \in \mathbb{N}$. (Check!)

Example (continuation)

Example (continuation)

On the previous slide we wrote:

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction.

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction. We need a formula $\varphi(x)$ that can be expressed in the "first-order" language of ZFC.

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction. We need a formula $\varphi(x)$ that can be expressed in the "first-order" language of ZFC. The length of such a formula is fixed, while the length of the statement $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ grows as n grows.

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction. We need a formula $\varphi(x)$ that can be expressed in the "first-order" language of ZFC. The length of such a formula is fixed, while the length of the statement $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ grows as n grows. We can get around this by defining, within ZFC, the function

$$
F(n)=1+2+\cdots+(2 n+1)
$$

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction. We need a formula $\varphi(x)$ that can be expressed in the "first-order" language of ZFC. The length of such a formula is fixed, while the length of the statement $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ grows as n grows. We can get around this by defining, within ZFC, the function

$$
F(n)=1+2+\cdots+(2 n+1)
$$

If we do this, then the formula $\varphi(n): F(n)=n^{2}$ will be a formula which expresses the conjecture we wanted to prove,

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction. We need a formula $\varphi(x)$ that can be expressed in the "first-order" language of ZFC. The length of such a formula is fixed, while the length of the statement $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ grows as n grows. We can get around this by defining, within ZFC, the function

$$
F(n)=1+2+\cdots+(2 n+1)
$$

If we do this, then the formula $\varphi(n): F(n)=n^{2}$ will be a formula which expresses the conjecture we wanted to prove, and to which the Principle of Induction can be applied.

Example (continuation)

On the previous slide we wrote: "Suppose we consider $\varphi(n): 1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ to be a formula that expresses this conjecture."
But this is not a formula of the type we used in our proof of the Principle of Mathematical Induction. We need a formula $\varphi(x)$ that can be expressed in the "first-order" language of ZFC. The length of such a formula is fixed, while the length of the statement $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$ grows as n grows. We can get around this by defining, within ZFC, the function

$$
F(n)=1+2+\cdots+(2 n+1)
$$

If we do this, then the formula $\varphi(n): F(n)=n^{2}$ will be a formula which expresses the conjecture we wanted to prove, and to which the Principle of Induction can be applied.

Recursion

Recursion

Recursion Theorem.

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example.

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC)

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC)

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR)

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR)

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR) $F(S(n))=F(n)+(2 n+3)$.

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR) $F(S(n))=F(n)+(2 n+3)$.

Hence, if $F(n)=1+3+\cdots+(2 n+1)$,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR) $F(S(n))=F(n)+(2 n+3)$.

Hence, if $F(n)=1+3+\cdots+(2 n+1)$, then
$F(n+1)=F(n)+(2 n+3)=(1+3+\cdots+(2 n+1))+(2 n+3)$,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR) $F(S(n))=F(n)+(2 n+3)$.

Hence, if $F(n)=1+3+\cdots+(2 n+1)$, then
$F(n+1)=F(n)+(2 n+3)=(1+3+\cdots+(2 n+1))+(2 n+3)$, as desired.

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR) $F(S(n))=F(n)+(2 n+3)$.

Hence, if $F(n)=1+3+\cdots+(2 n+1)$, then
$F(n+1)=F(n)+(2 n+3)=(1+3+\cdots+(2 n+1))+(2 n+3)$, as desired.
Now our conjecture $1+3+\cdots+(2 n+1)=n^{2}$ is expressible in a first-order way,

Recursion

Recursion Theorem. For any set A, any $a \in A$, and any function $G: A \times \mathbb{N} \rightarrow A$, there is a unique function $F: \mathbb{N} \rightarrow A$ satisfying
(1) $F(0)=a$, and
(2) $F(S(n))=G(F(n), n)$
for all $n \in \mathbb{N}$.
Example. Let $A=\mathbb{N}, a=1 \in A$, and $G(x, y)=x+(2 y+3)$. Then
(1) (Initial Condition, IC) $F(0)=1$, and
(2) (Recurrence relation, RR) $F(S(n))=F(n)+(2 n+3)$.

Hence, if $F(n)=1+3+\cdots+(2 n+1)$, then
$F(n+1)=F(n)+(2 n+3)=(1+3+\cdots+(2 n+1))+(2 n+3)$, as desired.
Now our conjecture $1+3+\cdots+(2 n+1)=n^{2}$ is expressible in a first-order way, $F(n)=n^{2}$, so the Principle of Induction may be applied to prove the conjecture.

Foreshadowing

Foreshadowing

It is probably too early to appreciate the power of the methods of

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion,

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion,

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information. We do not need to give a formula for the function, nor do we need to describe all the pairs in the function.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information. We do not need to give a formula for the function, nor do we need to describe all the pairs in the function.
(2) The Principle of Induction allows us to give a finite-length argument to derive conclusions in infinitely many cases.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information. We do not need to give a formula for the function, nor do we need to describe all the pairs in the function.
(2) The Principle of Induction allows us to give a finite-length argument to derive conclusions in infinitely many cases.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information. We do not need to give a formula for the function, nor do we need to describe all the pairs in the function.
(2) The Principle of Induction allows us to give a finite-length argument to derive conclusions in infinitely many cases.
(3) Induction is well-suited to prove facts about recursively-defined objects.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information. We do not need to give a formula for the function, nor do we need to describe all the pairs in the function.
(2) The Principle of Induction allows us to give a finite-length argument to derive conclusions in infinitely many cases.
(3) Induction is well-suited to prove facts about recursively-defined objects.

Foreshadowing

It is probably too early to appreciate the power of the methods of
(1) Definition by Recursion, and
(2) Proof by Induction.

It may help to keep in mind these comments:
(1) Definition by Recursion allows us to start with fragments of information concerning the definition of a function with domain \mathbb{N} and be guaranteed the existence of a uniquely determined function consistent with those fragments of information. We do not need to give a formula for the function, nor do we need to describe all the pairs in the function.
(2) The Principle of Induction allows us to give a finite-length argument to derive conclusions in infinitely many cases.
(3) Induction is well-suited to prove facts about recursively-defined objects. (Often it is the only way to prove such facts.)

